石榴子石族矿物状态方程研究进展

范大伟 李博 陈伟 许金贵 匡云倩 叶之琳 周文戈 谢鸿森

范大伟, 李博, 陈伟, 许金贵, 匡云倩, 叶之琳, 周文戈, 谢鸿森. 石榴子石族矿物状态方程研究进展[J]. 高压物理学报, 2018, 32(1): 010101. doi: 10.11858/gywlxb.20170597
引用本文: 范大伟, 李博, 陈伟, 许金贵, 匡云倩, 叶之琳, 周文戈, 谢鸿森. 石榴子石族矿物状态方程研究进展[J]. 高压物理学报, 2018, 32(1): 010101. doi: 10.11858/gywlxb.20170597
FAN Dawei, LI Bo, CHEN Wei, XU Jingui, KUANG Yunqian, YE Zhilin, ZHOU Wenge, XIE Hongsen. Research Progress of the Equation of State for Garnet Minerals[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010101. doi: 10.11858/gywlxb.20170597
Citation: FAN Dawei, LI Bo, CHEN Wei, XU Jingui, KUANG Yunqian, YE Zhilin, ZHOU Wenge, XIE Hongsen. Research Progress of the Equation of State for Garnet Minerals[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010101. doi: 10.11858/gywlxb.20170597

石榴子石族矿物状态方程研究进展

doi: 10.11858/gywlxb.20170597
基金项目: 

中国科学院战略性先导科技专项(B类) XDB18010401

国家自然科学基金 41274105

国家自然科学基金 41374107

国家自然科学基金 U1632112

中国科学院“西部之光”人才培养引进计划“西部青年学者”A类项目 

中国科学院青年创新促进会专项基金 

详细信息
    作者简介:

    范大伟(1982-), 男, 副研究员, 硕士生导师, 主要从事高温高压矿物物理研究. E-mail:fandawei@vip.gyig.ac.cn

    通讯作者:

    周文戈(1967-), 男, 研究员, 博士生导师, 主要从事高温高压岩石、矿物物性研究. E-mail:zhouwenge@vip.gyig.ac.cn

  • 中图分类号: O521.2

Research Progress of the Equation of State for Garnet Minerals

  • 摘要: 石榴子石是重要的造岩矿物,是上地幔、地幔转换带以及(超)高压变质岩中最重要的造岩矿物之一,研究其状态方程对于约束地球内部物质组成和状态、正确理解大洋岩石圈俯冲板块和地幔动力学过程具有重要意义。文中综述了20世纪70年代以来石榴子石p-V(压强-晶胞体积)和p-V-T(压强-晶胞体积-温度)状态方程的研究进展,重点讨论高温高压条件下石榴子石的稳定性以及组分变化和含水对热弹性参数的影响。最后简略概括石榴子石状态方程研究存在的问题,并指出发展方向。

     

  • 图  上地幔和过渡带在地幔岩模型(Pyrolite模型和Eclogite模型)中的矿物组成(根据文献[10]修改)

    Figure  1.  Mineral composition of the upper mantle and transition zone in pyrolite models including Pyrolytic model and Eclogite model (modified from Ref.[10])

    图  石榴子石矿物的晶体结构(红球表示氧原子)

    Figure  2.  Crystal structure of garnet (The red sphere is the oxygen atom)

    图  镁铝-铁铝榴石固溶体体弹模量随铁铝榴石摩尔分数的变化[27]

    Figure  3.  Bulk modulus vs.mole fraction of almandine for almandine-pyrope binary system[27]

    图  锰铝-铁铝榴石固溶体体弹模量随铁铝榴石摩尔分数的变化[42]

    Figure  4.  Bulk modulus vs.mole fraction of almandine for spessartine-almandine binary system[42]

    图  钙铝-钙铁榴石固溶体体弹模量随钙铝榴石摩尔分数的变化[44]

    Figure  5.  Bulk modulus vs.mole fraction of grossular for grossular-andradite binary system[44]

    图  镁铝-钙铝榴石固溶体体弹模量随钙铝榴石摩尔分数的变化[45]

    Figure  6.  Bulk modulus vs.mole fraction of grossular for pyrope-grossular binary system[45]

    图  玄武岩中地幔岩包体(a)、金伯利岩中地幔包体和金刚石包体(b)以及(超)高压变质带榴辉岩(c)中石榴子石的端元组成(涉及的参考文献:[52-55](玄武岩包体)、[56-59](金伯利岩和金刚石包体)、[60-63]((超)高压变质带榴辉岩))

    Figure  7.  Composition of garnets from the mantle-derived basalt xenolith (a), kimberlite and diamond xenolith (b) and (ultra) high pressure metamorphic (UHPM) eclogite (c)(Corresponding reference:[52-55](mantle-derived basalt xenolith), [56-59](kimberlite and diamond xenolith), [60-63]((ultra) high pressure metamorphic eclogite).)

    表  1  常温高压条件下不同组分石榴子石的弹性参数

    Table  1.   Elastic parameters of garnets with different chemical compositions at room temperature and high pressure

    Sample Composition V0/nm3 K0/GPa K0 Ref.
    Natural Prp 175 [19]
    Natural Prp 1.5093(3) 173.7(32) 4.0a [31]
    Natural Prp Prp67Alm20Grs11 1.5377(6) 179(3) 4.0a [32]
    Synthetic Prp Prp100 171(3) 1.8(7) [21]
    Synthetic Prp Prp100 1.5034(5) 175(1) 4.5(5) [23]
    Synthetic Prp Prp100 175a 3.3(10) [24]
    Synthetic Prp Prp100 1.5029(3) 171(2) 4.4(2) [25]
    Synthetic Prp Prp100 1.50615(16) 163.7(17) 6.4(4) [28]
    Synthetic Prp Prp100 1.5027 190(6) 5.45a [18]
    Synthetic Alm Alm100 175(7) 1.5(16) [21]
    Synthetic Alm Alm100 1.5286 185(3) 4.2(3) [25]
    Synthetic Alm Alm100 1.53352(1) 172.6(15) 5.8(5) [28]
    Synthetic Alm Alm100 1.5336 168(5) 5.45a [18]
    Natural Prp-Alm Prp60Alm31 1.5292 177(6) 5.45a [18]
    Natural Prp-Alm Prp22Alm72 1.5300 173(6) 5.45a [18]
    Synthetic Prp-Alm Prp83Alm17 1.511(1) 172(4) 4.3a [27]
    Synthetic Prp-Alm Prp54Alm46 1.515(2) 174(2) 4.3a [27]
    Synthetic Prp-Alm Prp30Alm70 1.526(1) 183(2) 4.3a [27]
    Synthetic Prp-Alm Prp60Alm40 1.51632(13) 167.2(17) 5.6(5) [28]
    Natural Spe Spe93 1.5730 171(1) 5.4(2) [33]
    Synthetic Spe Spe100 171.8a 7.4 (10) [24]
    Synthetic Spe Spe100 1.5636 183(4) 5.1(6) [25]
    Natural Grs Grs90 1.6644 173(2) 4.25a [20]
    Natural Grs Grs97 1.6623 175(4) 4.25a [20]
    Synthetic Grs Grs100 168(25) 6.2(4) [29]
    Synthetic Grs Grs100 1.6602 170(4) 5.2(6) [25]
    Natural And And100 1.7476(5) 159(2) 4.0a [32]
    Synthetic And And100 1.7513 162(5) 4.4(7) [25]
    Natural Grs-And Grs14And84 1.6848(3) 166(2) 4.0a [26]
    Natural Grs-And Grs34And64 1.6909(4) 168(3) 4.0a [26]
    Natural Grs-And Grs63And34 1.6992(5) 173(2) 4.0a [26]
    Natural Uva Uva62Grs35 1.6975 160(1) 5.8(1) [33]
    Synthetic Uva Uva100 162a 4.7(7) [24]
    Synthetic Kat Kat100 66(4) 4.1(5) [29]
    Synthetic Maj Maj100 1.5131 161.2 4.0a [30]
    Synthetic Maj 1.5470(3) 164.8(34) 4.0a [31]
    Synthetic My-Na Maj 1.5054(2) 175.1(13) 4.0a [31]
    Synthetic Na-Maj 1.4855(3) 191.5(25) 4.0a [31]
    Synthetic Ca-Maj 1.5246(5) 169.3(34) 4.0a [31]
      Note: The superscript “a” represents the value was fixed in the equation of state fitting.Prp, Alm, Spe, Grs, And, Uva, Kat, and Maj stand for pyrope, almandine, spessartine, grossular, andradite, uvarovite, katoite, and majorite, respectively.
    下载: 导出CSV

    表  2  高温高压下不同组分石榴子石的热弹性参数

    Table  2.   Thermoelastic parameters of garnets with different chemical compositions at high temperature and high pressure

    Sample Composition V0/nm3 K0/GPa K0 (K/T)p/
    (GPa·K-1)
    α0/
    (10-5K-1)
    Ref.
    Synthetic Prp Prp100 1.5031(5) 170(2) 5.0a -0.020(3) 2.30(20) [34]
    Synthetic Prp Prp100 1.5007(19) 164(9) 4.9(12) -0.024(13) 2.97(45) [35]
    Synthetic Alm Alm100 1.53105(7) 179(3) 4.0a -0.043(14) 2.60(50) [39]
    Natural Alm Alm86Prp7Spe7 1.5396(9) 177(2) 4.0a -0.032(16) 3.10(70) [41]
    Synthetic Spe Spe100 1.56496a 171(4) 5.3(8) -0.049(7) 2.46(54) [37]
    Natural Spe-Alm Spe38Alm62 1.5446(6) 180(4) 4.0(4) -0.028(5) 3.16(14) [42]
    Natural Spe-Alm Spe64Alm36 1.5577(9) 176(4) 4.0(5) -0.029(5) 3.04(16) [42]
    Synthetic Grs Grs100 1.6630(10) 159.7(4.0) 5.10(48) -0.021(2) 2.77(24) [36]
    Natural Grs Grs97Alm3 1.66608a 168.2(1.7) 4.0a -0.016(3) 2.78(2) [40]
    Natural And And99 1.75405a 158.0(1.5) 4.0a -0.020(3) 3.16(2) [40]
    Synthetic Grs-And Grs50And50 1.7069(2) 164(2) 4.7(2) -0.018(2) 2.94(7) [44]
    Synthetic Prp-Grs Prp80Grs20 1.5394(2) 159.1(2) 4.4a 2.382(11) [45]
    Synthetic Prp-Grs Prp60Grs40 1.5784(2) 161.8(1) 4.4a 2.425(4) [45]
    Synthetic Prp-Grs Prp40Grs60 1.6120(2) 160.7(1) 4.4a 2.258(1) [45]
    Synthetic Prp-Grs Prp20Grs80 1.6384(2) 158.3(1) 4.4a 2.129(33) [45]
    Synthetic Uva Uva100 1.7368(8) 162(3) 4.3(4) -0.021(4) 2.72(14) [43]
    Synthetic hydrous Prp Prp100 1.5054(3) 162(1) 4.9(2) -0.018(4) 3.20(10) [46]
    Synthetic Na-Maj Na-Maj 1.47588 184(4) 3.8(6) -0.023(5) 3.22(20) [38]
      Note: The superscript “a” represents the value was fixed in the equation of state fitting.
    下载: 导出CSV
  • [1] 谢鸿森.地球深部物质科学导论[M].北京:科学出版社, 1997.
    [2] 谢鸿森, 侯渭, 周文戈, 等.地球深部物质科学——在静高压大腔体实验研究方面的某些进展[J].地学前缘, 2000, 7(1):217-228. http://d.wanfangdata.com.cn/periodical_dxqy200001021.aspx

    XIE H S, HOU W, ZHOU W G, et al.On material science of the Earth's interior[J]. Earth Science Frontiers, 2000, 7(1):217-228. http://d.wanfangdata.com.cn/periodical_dxqy200001021.aspx
    [3] 杨晓志.浅谈高温高压实验地球科学:方法和应用[J].矿物岩石地球化学通报, 2015, 34(3):509-525. http://www.cqvip.com/QK/84215X/201503/665661852.html

    YANG X Z.A brief introduction of high temperature and high pressure experimental geosciences:methods and advances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(3):509-525. http://www.cqvip.com/QK/84215X/201503/665661852.html
    [4] RINGWOOD A E.Composition and petrology of the Earth's mantle[M]. New York:McGraw-Hill, 1975.
    [5] ANDERSON D L, BASS J D.Mineralogy and composition of the upper mantle[J]. Geophysical Research Letters, 1984, 11(7):637-640. doi: 10.1029/GL011i007p00637
    [6] DUFFY T S, ANDERSON D L.Seismic velocities in mantle minerals and the mineralogy of the upper mantle[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B2):1895-1912. doi: 10.1029/JB094iB02p01895
    [7] RINGWOOD A E.Phase transformations and their bearing on the constitution and dynamics of the mantle[J]. Geochimica et Cosmochimica Acta, 1991, 55(8):2083-2110. doi: 10.1016/0016-7037(91)90090-R
    [8] ITA J, STIXRUDE L.Petrology, elasticity, and composition of the mantle transition zone[J]. Journal of Geophysical Research:Solid Earth, 1992, 97(B5):6849-6866. doi: 10.1029/92JB00068
    [9] IRIFUNE T, RINGWOOD A E.Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle[J]. Earth and Planetary Science Letters, 1993, 117(1/2):101-110. https://www.sciencedirect.com/science/article/pii/0012821X9390120X
    [10] WOOD B J, KISEEVA E S, MATZEN A K.Garnet in the Earth's mantle[J]. Elements, 2013, 9(6):421-426. doi: 10.2113/gselements.9.6.421
    [11] MURAKAMI M, SINOGEIKIN S V, LITASOV K, et al.Single-crystal elasticity of iron-bearing majorite to 26 GPa:implications for seismic velocity structure of the mantle transition zone[J]. Earth and Planetary Science Letters, 2008, 274(3/4):339-345. https://www.sciencedirect.com/science/article/pii/S0012821X08004834
    [12] ANDERSON D L.Theory of the Earth[M]. Oxford:Blackwell Scientific Publications, 1989.
    [13] IRIFUNE T, SEKINE T, RINGWOOD A E, et al.The eclogite-garnetite transformation at high pressure and some geophysical implications[J]. Earth and Planetary Science Letters, 1986, 77(2):245-256. doi: 10.1016/0012-821X(86)90165-2
    [14] IRIFUNEA T, RINGWOOD A E. Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications[M]//MANGHNANI M, SYONO Y. High-Pressure Research in Mineral Physics: A Volume in Honor of Syun-iti Akimoto. Washington D C: American Geophysical Union, 1987: 231-242.
    [15] LIOU J G, ERNST W G, ZHANG R Y, et al.Ultrahigh-pressure minerals and metamorphic terranes-the view from China[J]. Journal of Asian Earth Sciences, 2009, 35(3):199-231. http://www.sciencedirect.com/science/article/pii/S1367912008001648
    [16] MEAGHER E P. Silicate garnet[M]//RABBE P H. Ortho-Silicates: Review in Mineralogy. Washington D C: Mineralogical Society of America, 1982: 25-66.
    [17] 李胜荣.结晶学与矿物学[M].北京:地质出版社, 2008.
    [18] TAKAHASHI T, LIU L G.Compression of ferromagnesian garnets and the effect of solid solutions on the bulk modulus[J]. Journal of Geophysical Research, 1970, 75(29):5757-5766. doi: 10.1029/JB075i029p05757
    [19] DUBA A, OLINGER B.Compression of garnet to 100 kilobars[J]. Journal of Geophysical Research, 1972, 77(14):2496-2499. doi: 10.1029/JB077i014p02496
    [20] WEAVER J S, TAKAHASHI T, BASS J.Isothermal compression of grossular garnets to 250 kbar and the effect of calcium on the bulk modulus[J]. Journal of Geophysical Research, 1976, 81(14):2475-2482. doi: 10.1029/JB081i014p02475
    [21] SATO Y, AKAOGI M, AKIMOTO S I.Hydrostatic compression of the synthetic garnets pyrope and almandine[J]. Journal of Geophysical Research:Solid Earth, 1978, 83(B1):335-338. doi: 10.1029/JB083iB01p00335
    [22] HAZEN R M, FINGER L W.Crystal structures and compressibilities of pyrope and grossular to 60 kbar[J]. American Mineralogist, 1978, 63(3/4):297-303. doi: 10.1007/BF00199500
    [23] LEVIEN L, PREWITT C T, WEIDNER D J.Compression of pyrope[J]. American Mineralogist, 1979, 64(7/8):805-808. http://www.researchgate.net/publication/285076500_Compression_of_pyrope?ev=auth_pub
    [24] LEGER J M, REDON A M, CHATEAU C.Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa[J]. Physics and Chemistry of Minerals, 1990, 17(2):161-167. doi: 10.1007/BF00199668
    [25] ZHANG L, AHSBAHS H, KUTOGLU A, et al.Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressures[J]. Physics and Chemistry of Minerals, 1999, 27(1):52-58. doi: 10.1007/s002690050240
    [26] FAN D W, WEI S Y, LIU J, et al.High pressure X-ray diffraction study of a grossular-andradite solid solution and the bulk modulus variation along this solid solution[J]. Chinese Physics Letters, 2011, 28(7):076101. doi: 10.1088/0256-307X/28/7/076101
    [27] HUANG S, CHEN J H.Equation of state of pyrope-almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction[J]. Physics of the Earth and Planetary Interiors, 2014, 228:88-91. doi: 10.1016/j.pepi.2014.01.014
    [28] MILANI S, NESTOLA F, ALVARO M, et al.Diamond-garnet geobarometry:the role of garnet compressibility and expansivity[J]. Lithos, 2015, 227:140-147. doi: 10.1016/j.lithos.2015.03.017
    [29] OLIJNYK H, PARIS E, GEIGER C A, et al.Compressional study of katoite[Ca3Al2(O4H4)3] and grossular garnet[J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B9):14313-14318. doi: 10.1029/91JB01180
    [30] YAGI T, UCHIYAMA Y, AKAOGI M, et al.Isothermal compression curve of MgSiO3 tetragonal garnet[J]. Physics of the Earth and Planetary Interiors, 1992, 74(1/2):1-7. https://www.sciencedirect.com/science/article/pii/S0031920197000290
    [31] HAZEN R M, DOWNS R T, CONRAD P G, et al.Comparative compressibilities of majorite-type garnets[J]. Physics and Chemistry of Minerals, 1994, 21(5):344-349. doi: 10.1007/BF00202099.pdf
    [32] HAZEN R M, FINGER L W.High-pressure crystal chemistry of andradite and pyrope:revised procedures for high-pressure diffraction experiments[J]. American Mineralogist, 1989, 74(3/4):352-359. https://hazen.carnegiescience.edu/sites/hazen.gl.ciw.edu/files/133-Andradite-1989.pdf
    [33] DIELLA V, SANI A, LEVY D, et al.High-pressure synchrotron X-ray diffraction study of spessartine and uvarovite:a comparison between different equation of state models[J]. American Mineralogist, 2004, 89(2/3):371-376. https://www.researchgate.net/publication/229430893_High-pressure_synchrotron_X-ray_diffraction_study_of_spessartine_and_uvarovite_A_comparison_between_different_equation_of_state_models
    [34] WANG Y B, WEIDNER D J, ZHANG J Z, et al.Thermal equation of state of garnets along the pyrope-majorite join[J]. Physics of the Earth and Planetary Interiors, 1998, 105(1/2):59-71. https://www.sciencedirect.com/science/article/pii/S0031920197000721
    [35] ZOU Y, GRÉAUX S, IRIFUNE T, et al.Thermal equation of state of Mg3Al2Si3O12 pyrope garnet up to 19 GPa and 1 700 K[J]. Physics and Chemistry of Minerals, 2012, 39(7):589-598. doi: 10.1007/s00269-012-0514-z
    [36] GRÉAUX S, KONO Y, NISHIYAMA N, et al.P-V-T equation of state of Ca3Al2Si3O12 grossular garnet[J]. Physics and Chemistry of Minerals, 2011, 38(2):85-94. doi: 10.1007/s00269-010-0384-1
    [37] GRÉAUX S, YAMADA A.P-V-T equation of state of Mn3Al2Si3O12 spessartine garnet[J]. Physics and Chemistry of Minerals, 2014, 41(2):141-149. doi: 10.1007/s00269-013-0632-2
    [38] DYMSHITS A M, LITASOV K D, SHATSKIY A, et al.P-V-T equation of state of Na-majorite to 21 GPa and 1 673 K[J]. Physics of the Earth and Planetary Interiors, 2014, 227:68-75. doi: 10.1016/j.pepi.2013.11.005
    [39] ARIMOTO T, GRÉAUX S, IRIFUNE T, et al.Sound velocities of Fe3Al2Si3O12 almandine up to 19 GPa and 1 700 K[J]. Physics of the Earth and Planetary Interiors, 2015, 246:1-8. doi: 10.1016/j.pepi.2015.06.004
    [40] PAVESE A, DIELLA V, PISCHEDDA V, et al.Pressure-volume-temperature equation of state of andradite and grossular, by high-pressure and-temperature powder diffraction[J]. Physics and Chemistry of Minerals, 2001, 28(4):242-248. doi: 10.1007/s002690000144
    [41] FAN D W, ZHOU W G, LIU C Q, et al.The thermal equation of state of (Fe0.86Mg0.07Mn0.07)3Al2Si3O12 almandine[J]. Mineralogical Magazine, 2009, 73(1):95-102. doi: 10.1180/minmag.2009.073.1.95
    [42] FAN D W, XU J G, MA M N, et al.P-V-T equation of state of spessartine-almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction[J]. Physics and Chemistry of Minerals, 2015, 42(1):63-72. doi: 10.1007/s00269-014-0700-2
    [43] FAN D W, XU J G, MA M N, et al.P-V-T equation of state of Ca3Cr2Si3O12 uvarovite garnet by using a diamond-anvil cell and in-situ synchrotron X-ray diffraction[J]. American Mineralogist, 2015, 100(2/3):588-597. https://www.researchgate.net/publication/259324214_High-Pressure_and_High-Temperature_Stability_and_Equation_of_State_of_Superhydrous_Phase_B
    [44] FAN D W, KUANG Y Q, XU J G, et al.Thermoelastic properties of grossular-andradite solid solution at high pressures and temperatures[J]. Physics and Chemistry of Minerals, 2017, 44(2):137-147. doi: 10.1007/s00269-016-0843-4
    [45] DU W, CLARK S M, WALKER D.Thermo-compression of pyrope-grossular garnet solid solutions:non-linear compositional dependence[J]. American Mineralogist, 2015, 100(1):215-222. doi: 10.2138/am-2015-4752
    [46] FAN D W, LU C, XU J G, et al.Effects of water on P-V-T equation of state of pyrope[J]. Physics of the Earth and Planetary Interiors, 2017, 267:9-18. doi: 10.1016/j.pepi.2017.03.005
    [47] LIU X, SHIEH S R, FLEET M E, et al.High-pressure study on lead fluorapatite[J]. American Mineralogist, 2008, 93(10):1581-1584. doi: 10.2138/am.2008.2816
    [48] ALLRED A L.Electronegativity values from thermochemical data[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 17(3/4):215-221. https://www.sciencedirect.com/science/article/pii/0022190261801425
    [49] SHANNON R D.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5):751-767. doi: 10.1107/S0567739476001551
    [50] SANI A, QUARTIERI S, BOSCHERINI F, et al.Fe2+-O and Mn2+-O bonding and Fe2+-and Mn2+-vibrational properties in synthetic almandine-spessartine solid solutions:an X-ray absorption fine structure study[J]. European Journal of Mineralogy, 2004, 16(5):801-808. doi: 10.1127/0935-1221/2004/0016-0801
    [51] GRIGGS D T, BLACIC J D.Quartz:anomalous weakness of synthetic crystals[J]. Science, 1965, 147(3655):292-295. doi: 10.1126/science.147.3655.292
    [52] CHEN S H, O'REILLY S Y, ZHOU X H, et al.Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China:evidence from xenoliths[J]. Lithos, 2001, 56(4):267-301. doi: 10.1016/S0024-4937(00)00065-7
    [53] XU W, LIU X, WANG Q, et al.Garnet exsolution in garnet clinopyroxenite and clinopyroxenite xenoliths in early Cretaceous intrusions from the Xuzhou region, eastern China[J]. Mineralogical Magazine, 2004, 68(3):443-453. doi: 10.1180/0026461046830198
    [54] IONOV D A, ASHCHEPKOV I, JAGOUTZ E.The provenance of fertile off-craton lithospheric mantle:Sr-Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia[J]. Chemical Geology, 2005, 217(1):41-75. https://www.sciencedirect.com/science/article/pii/S000925410400484X
    [55] HUANG X L, XU Y G, LO C H, et al.Exsolution lamellae in a clinopyroxene megacryst aggregate from Cenozoic basalt, Leizhou Peninsula, South China:petrography and chemical evolution[J]. Contributions to Mineralogy and Petrology, 2007, 154(6):691-705. doi: 10.1007/s00410-007-0218-4
    [56] ZHANG H F, ZHOU M F, SUN M, et al.The origin of Mengyin and Fuxian diamondiferous kimberlites from the North China Craton:implication for Palaeozoic subducted oceanic slab-mantle interaction[J]. Journal of Asian Earth Sciences, 2010, 37(5):425-437. https://www.sciencedirect.com/science/article/pii/S1367912009002478
    [57] ALIFIROVA T A, POKHILENKO L N, KORSAKOV A V.Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia[J]. Lithos, 2015, 226:31-49. doi: 10.1016/j.lithos.2015.01.020
    [58] SPETSIUS Z V, BOGUSH I N, KOVALCHUK O E.FTIR mapping of diamond plates of eclogitic and peridotitic xenoliths from the Nyurbinskaya pipe, Yakutia:genetic implications[J]. Russian Geology and Geophysics, 2015, 56(1/2):344-353. https://www.sciencedirect.com/science/article/pii/S1068797115000267
    [59] RICHES A J V, ICKERT R B, PEARSON D G, et al.In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from Roberts Victor, Kaapvaal Craton[J]. Geochimica et Cosmochimica Acta, 2016, 174:345-359. doi: 10.1016/j.gca.2015.11.028
    [60] RUBATTO D, HERMANN J.Zircon formation during fluid circulation in eclogites (Monviso, Western Alps):implications for Zr and Hf budget in subduction zones[J]. Geochimica et Cosmochimica Acta, 2003, 67(12):2173-2187. doi: 10.1016/S0016-7037(02)01321-2
    [61] BUCHER K, FAZIS Y, CAPITANI C D, et al.Blueschists, eclogites, and decompression assemblages of the Zermatt-Saas ophiolite:high-pressure metamorphism of subducted Tethys lithosphere[J]. American Mineralogist, 2005, 90(5/6):821-835. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/90/5-6/821/44411/blueschists-eclogites-and-decompression
    [62] GLODNY J, RING U, KUHN A, et al.Crystallization and very rapid exhumation of the youngest Alpine eclogites (Tauern Window, Eastern Alps) from Rb/Sr mineral assemblage analysis[J]. Contributions to Mineralogy and Petrology, 2005, 149(6):699-712. doi: 10.1007/s00410-005-0676-5
    [63] LIN W, SHI Y H, WANG Q C.Exhumation tectonics of the HP-UHP orogenic belt in Eastern China:new structural-petrological insights from the Tongcheng massif, Eastern Dabieshan[J]. Lithos, 2009, 109(3):285-303. http://www.sciencedirect.com/science/article/pii/S0024493708002314
    [64] 李晓东, 李晖, 李鹏善.同步辐射高压单晶衍射实验技术[J].物理学报, 2017, 66(3):130-142. http://www.oalib.com/paper/4339226

    LI X D, LI H, LI P S.High pressure single-crystal synchrotron X-ray diffraction technique[J]. Acta Physica Sinica, 2017, 66(3):130-142. http://www.oalib.com/paper/4339226
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  9252
  • HTML全文浏览量:  3603
  • PDF下载量:  277
出版历程
  • 收稿日期:  2017-06-23
  • 修回日期:  2017-07-07

目录

    /

    返回文章
    返回