Dynamic Response of Sandwich Cylinders Cored with Aluminum Foam under Internal Blast Loading
-
摘要: 泡沫铝夹心柱壳在防爆容器领域具有广阔的应用前景。对泡沫铝夹心柱壳在内部爆炸载荷下的动态响应特性进行了实验研究, 并建立了基于Voronoi技术的泡沫铝夹心柱壳有限元模型, 对其动态响应进行了数值模拟。研究结果表明:仿真结果与实验结果吻合较好, 内部爆炸载荷作用下内壳变形量随芯体相对密度增大而减小, 外壳变形量随芯体相对密度的增大而增大, 且壳体变形量与芯体相对密度近似满足二次函数关系。Abstract: Sandwich cylinders cored with aluminum foam have been widely applied in the fabrication of blast protection containers.The experiment under internal blast loading was performed and, based on the Voronoi technique, finite element models of sandwich cylinders were constructed and then used to simulate the deformation process of the sandwich cylinders.The results show that the simulation results agree well with the experiment results.With the increase of the cores' relative densities, the deflections of the inner shells increase and the deflections of the outer shells decrease.Furthermore, the deflections of the shells and the relative density of the cores approximately satisfy a quadratic relationship.
-
Key words:
- internal blast /
- aluminum foam /
- sandwich cylinders /
- deflection /
- Voronoi technique
-
表 1 实验工况设计
Table 1. Experimental designs
Case No. m/g ρR J1 9.6 0.12 J2 14.1 0.12 J3 9.6 0.16 J4 14.1 0.16 J5 9.6 0.26 J6 14.1 0.26 表 2 实验结果
Table 2. Experimental results
Case No. din/mm dout/mm J1 19.7 11.7 J2 28.6 22.5 J3 18.7 14.9 J4 27.6 23.6 J5 13.8 15.0 J6 24.6 24.4 表 3 材料参数
Table 3. Material parameters
Material Density/(g·cm-3) Young's modulus/GPa Yield stress/MPa Poisson's ratio Aluminum 2.70 69 170 0.3 Steel 7.85 210 410 0.3 表 4 仿真工况设计
Table 4. Simulation designs
Relative density No.of work condition d=6.0 mm d=4.5 mm d=3.0 mm 0.06 301 401 501 0.07 302 402 502 0.08 303 403 503 0.09 304 404 504 0.10 305 405 505 0.11 306 406 506 0.12 307 407 507 0.13 308 408 508 0.14 309 409 509 0.15 310 410 510 -
[1] 倪小军, 马宏昊, 沈兆武, 等.泡沫铝柱壳对药柱水下爆炸压力场影响的数值研究[J].高压物理学报, 2014, 28(2):175-181. doi: 10.11858/gywlxb.2014.02.007NI X J, MA H H, SHEN Z W, et al.Effects of Al foam on pressure fields of underwater explosion[J].Chinese Journal of High Pressure Physics, 2014, 28(2):175-181. doi: 10.11858/gywlxb.2014.02.007 [2] SHEN J H, LU G X, ZHAO L M, et al.Short sandwich tubes subjected to internal explosive loading[J].Engineering Structures, 2013, 55(4):56-65. https://researchbank.rmit.edu.au/view/rmit:21829 [3] LIU X R, TIAN X G, LU T J, et al.Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores[J].Composite Structures, 2012, 94(8):2485-2493. doi: 10.1016/j.compstruct.2012.02.029 [4] KARAGIOZOVA D, LANGDON G S, NURICK G N, et al.The influence of a low density foam sandwich core on the response of a partially confined steel cylinder to internal air-blast[J].International Journal of Impact Engineering, 2016, 92:32-49. doi: 10.1016/j.ijimpeng.2015.09.010 [5] 王家维, 田晓耕.水中爆炸载荷下夹心圆柱壳的结构优化[J].固体力学学报, 2015, 36(增刊1):1-7.WANG J W, TIAN X G.Structure optimization of aluminum foam-cored sandwich shell subjected to underwater explosion[J].Chinese Journal of Solid Mechanics, 2015, 36(Suppl 1):1-7. [6] LIANG M Z, LU F Y, ZHANG G D, et al.Experimental and numerical study of aluminum foam-cored sandwich tubes subjected to internal air blast[J].Composites Part B:Engineering, 2017, 125:134-143. doi: 10.1016/j.compositesb.2017.05.073 [7] LIANG M Z, ZHANG G D, LU F Y, et al.Blast resistance and design of sandwich cylinder with graded foam cores based on the Voronoi algorithm[J].Thin-Walled Structures, 2017, 112:98-106. doi: 10.1016/j.tws.2016.12.016 [8] LIANG M Z, LU F Y, ZHANG G D, et al.Design of stepwise foam claddings subjected to air-blast based on Voronoi model[J].Steel and Composite Structures, 2017, 23(1):107-114. doi: 10.12989/scs.2017.23.1.107