大着速范围长杆弹侵彻深度变化及其影响因素的数值模拟

徐晨阳 张先锋 刘闯 邓佳杰 郑应民

徐晨阳, 张先锋, 刘闯, 邓佳杰, 郑应民. 大着速范围长杆弹侵彻深度变化及其影响因素的数值模拟[J]. 高压物理学报, 2018, 32(2): 025103. doi: 10.11858/gywlxb.20170592
引用本文: 徐晨阳, 张先锋, 刘闯, 邓佳杰, 郑应民. 大着速范围长杆弹侵彻深度变化及其影响因素的数值模拟[J]. 高压物理学报, 2018, 32(2): 025103. doi: 10.11858/gywlxb.20170592
XU Chenyang, ZHANG Xianfeng, LIU Chuang, DENG Jiajie, ZHENG Yingmin. Depth of Penetration and Its Influence Factors of Long Rod Projectile Impacting on Semi Infinite Target with Elevated Velocity[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 025103. doi: 10.11858/gywlxb.20170592
Citation: XU Chenyang, ZHANG Xianfeng, LIU Chuang, DENG Jiajie, ZHENG Yingmin. Depth of Penetration and Its Influence Factors of Long Rod Projectile Impacting on Semi Infinite Target with Elevated Velocity[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 025103. doi: 10.11858/gywlxb.20170592

大着速范围长杆弹侵彻深度变化及其影响因素的数值模拟

doi: 10.11858/gywlxb.20170592
基金项目: 

中共中央组织部青年拔尖人才支持计划 2014

中央高校基本科研业务专项基金 30917011104

中央高校基本科研业务专项基金 30916011305

国家自然科学基金委员会与中国工程物理研究院联合基金 U1730101

详细信息
    作者简介:

    徐晨阳(1992—), 男,硕士研究生,主要从事冲击动力学研究.E-mail:xcynjust@126.com

    通讯作者:

    张先锋(1978—), 男,博士,教授,主要从事高效毁伤与防护研究.E-mail:lynx@njust.edu.cn

  • 中图分类号: O385

Depth of Penetration and Its Influence Factors of Long Rod Projectile Impacting on Semi Infinite Target with Elevated Velocity

  • 摘要: 高速/超高速侵彻问题一直是武器设计者和防护工程专家关注的焦点问题之一。随着撞击速度的提高,弹体可能进入流体侵彻阶段,侵彻深度不再随速度的增大单调上升。针对撞击速度增加侵彻深度可能出现增量逆转的现象,开展了大着速范围长杆弹侵彻深度变化的数值模拟研究,分析了弹体硬度、头部形状、弹体材料及靶体材料对侵彻转变点的影响。结果表明:随着长杆弹冲击速度的提升,侵彻深度先上升后下降;同时,弹体硬度提高,到达侵彻转变点对应的撞击速度提高;尖卵形头部弹体到达侵彻转变点的撞击速度比球形头部弹体高;此外,弹靶材料对侵彻深度转变也有较大的影响。

     

  • 图  长杆弹侵彻深度理论计算曲线

    Figure  1.  Theoretical DOP results of LRP at elevated impact velocity

    图  有限元模型

    Figure  2.  Finite element model

    图  撞击速度为967 m/s时弹靶变形过程

    Figure  3.  Simulation of normalized DOP and deformation at 967 m/s impact velocity

    图  模拟侵深与实验数据对比

    Figure  4.  Comparison between simulation normalized DOP and experimental data

    图  不同硬度弹体侵彻深度-速度曲线

    Figure  5.  Normalized DOP versus impact velocity for projectile with different hardnesses

    图  不同头部形状弹体侵彻深度-速度曲线

    Figure  6.  Normalized DOP versus impact velocity for projectile with different nose shapes

    图  不同靶体材料侵彻规律

    Figure  7.  Normalized DOP versus impact velocity for target with different materials

    图  不同材料弹体的侵彻规律

    Figure  8.  Normalized DOP versus impact velocity for projectiles with different materials

    表  1  弹体仿真模型主要参数

    Table  1.   Basic parameters of projectile

    A/MPa B/MPa n C D1 D2 D3 D4
    1 069 710.1 0.459 0.047 0.239 8.593 6.67 0.009
    下载: 导出CSV

    表  2  靶体仿真模型主要参数

    Table  2.   Basic parameters of target

    G/MPa Y/MPa β n Gp GT/(MPa·K-1) Yp T/K
    2 760 680 125 0.1 1.8 -17 0.018 1 220
    下载: 导出CSV

    表  3  30CrMnSiNi2A材料的J-C模型参数[20]

    Table  3.   J-C Parameters of 30CrMnSiNi2A materials[20]

    HRC A/MPa B/MPa n C D1 D2 D3 D4
    31 745 623.11 0.424 0.061 0.351 1.650 2.589 0.020
    36 814 643.57 0.446 0.055 0.348 2.673 4.333 0.012
    45 1 269 810.18 0.479 0.040 0.239 8.593 7.867 0.009
    55 1 516 1 537.97 0.610 0.017 0.014 0.015 3.251 0.007
    下载: 导出CSV

    表  4  不同硬度条件下侵彻转变阶段的弹体速度范围

    Table  4.   Range of projectile velocity in the transition stage with different hardnesses

    HRC Velocity range/(m·s-1)
    31 806-1 100
    36 832-1100
    45 967-1216
    下载: 导出CSV

    表  5  不同头部形状弹体参数

    Table  5.   Geometric size of rod with different nose

    Head shape R/mm L0/mm d/mm ρ/(g·cm-3) m/g
    Ball 3.5 71.00 3.5 7.83 21
    Ogive, φ=2 14.2 73.26 3.5 7.83 21
    Ogive, φ=3 21.3 73.61 3.5 7.83 21
    Ogive, φ=4 28.4 74.56 3.5 7.83 21
    下载: 导出CSV

    表  6  弹体材料参数

    Table  6.   Parameters of projectile material

    Material ρ/(g·cm-3) A/MPa B/MPa n C D1 D2 D3 D4
    30CrMnSiNi2A 7.83 745 623.11 0.424 0.061 0.351 1.650 2.589 0.020
    Tungalloy 17.70 631 1 258.00 0.092 0.014 0 0.330 -1.500 0
    下载: 导出CSV
  • [1] PIEKUTOWSKI A J, FORRESTAL M J, POORMON K L, et al.Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering, 1999, 23(1):723-734. doi: 10.1016/S0734-743X(99)00117-7
    [2] FORRESTAL M J, PIEKUTOWSKI A J.Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering, 2000, 24(1):57-67. doi: 10.1016/S0734-743X(99)00033-0
    [3] WEN H M, LAN B.Analytical models for the penetration of semi-infinite targets by rigid, deformable and erosive long rods[J]. Acta Mechanica Sinica, 2010, 26(4):573-583. doi: 10.1007/s10409-010-0349-0
    [4] LAN B, WEN H M.Alekseevskii-Tate revisited:an extension to the modified hydrodynamic theory of long rod penetration[J]. Science China Technological Sciences, 2010, 53(5):1364-1373. doi: 10.1007/s11431-010-0011-x
    [5] 兰彬, 文鹤鸣.半球形弹头钢长杆弹侵彻半无限铝合金靶的数值模拟[J].工程力学, 2009, 26(10):183-190. http://www.oalib.com/paper/4187337

    LAN B, WEN H M.Numerical simulation of the penetration of a spherical-nosed 4340 steel long rod into semi-infinite 6061-T6511 aluminum targets[J]. Engineering Mechanics, 2009, 26(10):183-190. http://www.oalib.com/paper/4187337
    [6] 楼建锋, 王政, 洪滔, 等.钨合金杆侵彻半无限厚铝合金靶的数值研究[J].高压物理学报, 2009, 23(1):65-70. doi: 10.11858/gywlxb.2009.01.011

    LOU J F, WANG Z, HONG T, et al.Numerical study on penetration of semi-infinite aluminum-alloy targets by tungsten-alloy rod[J]. Chinese Journal of High Pressure Physics, 2009, 23(1):65-70. doi: 10.11858/gywlxb.2009.01.011
    [7] 楼建锋, 何长江, 朱建士, 等.长杆侵彻中材料参数对侵彻性能的影响[J].计算物理, 2009, 26(4):559-563. http://www.cqvip.com/QK/96308X/200904/31161264.html

    LOU J F, HE C J, ZHU J S, et al.Ballistic performance of long rods:material properties[J]. Chinese Journal of Computational Physics, 2009, 26(4):559-563. http://www.cqvip.com/QK/96308X/200904/31161264.html
    [8] 楼建锋, 洪滔, 王政, 等.钨合金杆材料属性与侵彻性能的关系[J].计算力学学报, 2009, 26(3):433-436.

    LOU J F, HONG T, WANG Z, et al.Relations between material parameters of tungsten-alloy rod and its ballistic performance[J]. Chinese Journal of Computational Mechanics, 2009, 26(3):433-436.
    [9] 陈小伟, 杨世全, 何丽灵.动能侵彻弹体的质量侵蚀模型分析[J].力学学报, 2009, 41(5):739-747. doi: 10.6052/0459-1879-2009-5-2008-295

    CHEN X W, YANG S Q, HE L L.Modeling on mass abrasion of kinetic energy penetrator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5):739-747. doi: 10.6052/0459-1879-2009-5-2008-295
    [10] 张凤国, 李维新, 洪涛, 等.超高速钨合金长杆弹对混凝土侵彻及损伤破坏的数值分析[J].弹道学报, 2008, 20(3):64-67. http://d.old.wanfangdata.com.cn/Periodical/ddxb200803016

    ZHANG F G, LI W X, HONG T, et al.Numerical simulation for damage and penetration of concrete driven by long-rod projectile of tungsten alloy under super-high speed[J]. Journal of Ballistics, 2008, 20(3):64-67. http://d.old.wanfangdata.com.cn/Periodical/ddxb200803016
    [11] ROSENBERG Z, DEKEL E.Numerical study of the transition from rigid to eroding-rod penetration[J]. Journal de Physique Ⅳ, 2003, 110(9):681-686.
    [12] 王猛, 黄德斌, 曲家惠, 等.钨合金杆式弹侵彻45~#钢变形失效行为的数值分析[J].塑性工程学报, 2012, 19(2):102-106. http://d.old.wanfangdata.com.cn/Periodical/sxgcxb201202021

    WANG M, HUANG D B, QU J H, et al.Simulation on the deformation and fracture of long-rod projectile of tungsten alloy penetrating into 45~# steel[J]. Journal of Plasticity Engineering, 2012, 19(2):102-106. http://d.old.wanfangdata.com.cn/Periodical/sxgcxb201202021
    [13] 王政, 楼建锋, 勇珩, 等.岩石、混凝土和土抗侵彻能力数值计算与分析[J].高压物理学报, 2010, 24(3):175-180. doi: 10.11858/gywlxb.2010.03.003

    WANG Z, LOU J F, YONG H, et al.Numerical computation and analysis on anti-penetration capability of rock, concrete and soil[J]. Chinese Journal of High Pressure Physics, 2010, 24(3):175-180. doi: 10.11858/gywlxb.2010.03.003
    [14] 练兵, 蒋建伟, 门建兵, 等.高速长杆弹对混凝土靶侵彻规律的仿真分析[J].高压物理学报, 2010, 24(5):377-382. doi: 10.11858/gywlxb.2010.05.010

    LIAN B, JIANG J W, MEN J B, et al.Simulation analysis on law of penetration of long-rod projectiles with high speed into concrete[J]. Chinese Journal of High Pressure Physics, 2010, 24(5):377-382. doi: 10.11858/gywlxb.2010.05.010
    [15] WALKER J D, ANDERSON C E.A time-dependent model for long-rod penetration[J]. International Journal of Impact Engineering, 1995, 16(1):19-48. doi: 10.1016/0734-743X(94)00032-R
    [16] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, 1983, 21: 541-547.
    [17] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin, 1999.
    [18] JOHNSON G R, HOLMQUIST T J.Response of boron carbide subjected to large strains, high strain rates, and high pressures[J]. Journal of Applied Physics, 1999, 85(12):8060-8073. doi: 10.1063/1.370643
    [19] 兰彬. 长杆弹侵彻半无限靶的数值模拟和理论研究[D]. 合肥: 中国科学技术大学, 2008.
    [20] 李磊, 张先锋, 吴雪, 等.不同硬度30CrMnSiNi2A钢的动态本构与损伤参数[J].高压物理学报, 2016, 31(3):239-248. http://www.gywlxb.cn/CN/abstract/abstract1954.shtml

    LI L, ZHANG X F, WU X, et al.Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses[J]. Chinese Journal of High Pressure Physics, 2016, 31(3):239-248. http://www.gywlxb.cn/CN/abstract/abstract1954.shtml
    [21] 李磊. 不同硬度30CrMnSiNi2A钢动态本构与损伤参数研究[D]. 南京: 南京理工大学, 2017.
    [22] STEINBERG D.Equation of state and strength properties of selected materials[M]. Livermore, CA:Lawrence Livermore National Laboratory, 1996.
    [23] 陈小伟.穿甲/侵彻问题的若干工程研究进展[J].力学进展, 2009, 39(3):316-351. doi: 10.6052/1000-0992-2009-3-J2007-090

    CHEN X W.Advances in the penetration/perforation of rigid projectiles[J]. Advances in Mechanics, 2009, 39(3):316-351. doi: 10.6052/1000-0992-2009-3-J2007-090
    [24] 王可慧, 耿宝刚, 初哲, 等.弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究[J].高压物理学报, 2014, 28(1):61-68. doi: 10.11858/gywlxb.2014.01.010

    WANG K H, GENG B G, CHU Z, et al.Experimental studies on structural response and mass loss of high velocity projectiles penetrating into reinforced concrete targets[J]. Chinese Journal of High Pressure Physics, 2014, 28(1):61-68. doi: 10.11858/gywlxb.2014.01.010
    [25] 沈俊, 徐翔云, 何翔, 等.弹体高速侵彻岩石效应试验研究[J].岩石力学与工程学报, 2010, 29(增刊2):4207-4212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2106

    SHEN J, XU X Y, HE X, et al.Experimental study of effect of rock targets penetrated by high-velocity projectiles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Suppl 2):4207-4212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2106
    [26] MATUSKA D A. HULL users' manual: AFATL-TR-84-59[R]. Florida: Air Force Armament Laboratory, 1984.
    [27] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin, 1999.
    [28] AI H A, AHRENS T J.Simulation of dynamic response of granite:a numerical approach of shock-induced damage beneath impact craters[J]. International Journal of Impact Engineering, 2006, 33(1):1-10. https://www.sciencedirect.com/science/article/pii/S0734743X06001710
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  7031
  • HTML全文浏览量:  3011
  • PDF下载量:  567
出版历程
  • 收稿日期:  2017-06-15
  • 修回日期:  2017-06-25

目录

    /

    返回文章
    返回