Depth of Penetration and Its Influence Factors of Long Rod Projectile Impacting on Semi Infinite Target with Elevated Velocity
-
摘要: 高速/超高速侵彻问题一直是武器设计者和防护工程专家关注的焦点问题之一。随着撞击速度的提高,弹体可能进入流体侵彻阶段,侵彻深度不再随速度的增大单调上升。针对撞击速度增加侵彻深度可能出现增量逆转的现象,开展了大着速范围长杆弹侵彻深度变化的数值模拟研究,分析了弹体硬度、头部形状、弹体材料及靶体材料对侵彻转变点的影响。结果表明:随着长杆弹冲击速度的提升,侵彻深度先上升后下降;同时,弹体硬度提高,到达侵彻转变点对应的撞击速度提高;尖卵形头部弹体到达侵彻转变点的撞击速度比球形头部弹体高;此外,弹靶材料对侵彻深度转变也有较大的影响。Abstract: Hypervelocity penetration is an important issue for a weapon designer and protection engineering experts.With the increase of the impact velocity, a projectile may transition into a fluid penetration phase, and its depth of penetration (DOP) no longer rises monotonously with the velocity.Numerical simulation of the penetration processes of a long rod projectile at an elevated impact velocity was performed to analyze the variation and influencing factors of the transition point.Influences of the hardness, nose shape, material of the projectile and the target on the transition point of DOP were simulated.The simulation results show that, with the increase of the impact velocity, the DOP increases at first and then decreases at a certain velocity (called the transition velocity).The velocity of the transition point improves with the increase of the projectile's hardness.The Ogive-headed projectile has a higher transition point than the spherical-headed projectile.Moreover, the projectile/target material also has significant effects on the transition point.
-
Key words:
- hypervelocity penetration /
- long rod projectile /
- depth of penetration /
- transition point
-
表 1 弹体仿真模型主要参数
Table 1. Basic parameters of projectile
A/MPa B/MPa n C D1 D2 D3 D4 1 069 710.1 0.459 0.047 0.239 8.593 6.67 0.009 表 2 靶体仿真模型主要参数
Table 2. Basic parameters of target
G/MPa Y/MPa β n Gp GT/(MPa·K-1) Yp T/K 2 760 680 125 0.1 1.8 -17 0.018 1 220 HRC A/MPa B/MPa n C D1 D2 D3 D4 31 745 623.11 0.424 0.061 0.351 1.650 2.589 0.020 36 814 643.57 0.446 0.055 0.348 2.673 4.333 0.012 45 1 269 810.18 0.479 0.040 0.239 8.593 7.867 0.009 55 1 516 1 537.97 0.610 0.017 0.014 0.015 3.251 0.007 表 4 不同硬度条件下侵彻转变阶段的弹体速度范围
Table 4. Range of projectile velocity in the transition stage with different hardnesses
HRC Velocity range/(m·s-1) 31 806-1 100 36 832-1100 45 967-1216 表 5 不同头部形状弹体参数
Table 5. Geometric size of rod with different nose
Head shape R/mm L0/mm d/mm ρ/(g·cm-3) m/g Ball 3.5 71.00 3.5 7.83 21 Ogive, φ=2 14.2 73.26 3.5 7.83 21 Ogive, φ=3 21.3 73.61 3.5 7.83 21 Ogive, φ=4 28.4 74.56 3.5 7.83 21 表 6 弹体材料参数
Table 6. Parameters of projectile material
Material ρ/(g·cm-3) A/MPa B/MPa n C D1 D2 D3 D4 30CrMnSiNi2A 7.83 745 623.11 0.424 0.061 0.351 1.650 2.589 0.020 Tungalloy 17.70 631 1 258.00 0.092 0.014 0 0.330 -1.500 0 -
[1] PIEKUTOWSKI A J, FORRESTAL M J, POORMON K L, et al.Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering, 1999, 23(1):723-734. doi: 10.1016/S0734-743X(99)00117-7 [2] FORRESTAL M J, PIEKUTOWSKI A J.Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering, 2000, 24(1):57-67. doi: 10.1016/S0734-743X(99)00033-0 [3] WEN H M, LAN B.Analytical models for the penetration of semi-infinite targets by rigid, deformable and erosive long rods[J]. Acta Mechanica Sinica, 2010, 26(4):573-583. doi: 10.1007/s10409-010-0349-0 [4] LAN B, WEN H M.Alekseevskii-Tate revisited:an extension to the modified hydrodynamic theory of long rod penetration[J]. Science China Technological Sciences, 2010, 53(5):1364-1373. doi: 10.1007/s11431-010-0011-x [5] 兰彬, 文鹤鸣.半球形弹头钢长杆弹侵彻半无限铝合金靶的数值模拟[J].工程力学, 2009, 26(10):183-190. http://www.oalib.com/paper/4187337LAN B, WEN H M.Numerical simulation of the penetration of a spherical-nosed 4340 steel long rod into semi-infinite 6061-T6511 aluminum targets[J]. Engineering Mechanics, 2009, 26(10):183-190. http://www.oalib.com/paper/4187337 [6] 楼建锋, 王政, 洪滔, 等.钨合金杆侵彻半无限厚铝合金靶的数值研究[J].高压物理学报, 2009, 23(1):65-70. doi: 10.11858/gywlxb.2009.01.011LOU J F, WANG Z, HONG T, et al.Numerical study on penetration of semi-infinite aluminum-alloy targets by tungsten-alloy rod[J]. Chinese Journal of High Pressure Physics, 2009, 23(1):65-70. doi: 10.11858/gywlxb.2009.01.011 [7] 楼建锋, 何长江, 朱建士, 等.长杆侵彻中材料参数对侵彻性能的影响[J].计算物理, 2009, 26(4):559-563. http://www.cqvip.com/QK/96308X/200904/31161264.htmlLOU J F, HE C J, ZHU J S, et al.Ballistic performance of long rods:material properties[J]. Chinese Journal of Computational Physics, 2009, 26(4):559-563. http://www.cqvip.com/QK/96308X/200904/31161264.html [8] 楼建锋, 洪滔, 王政, 等.钨合金杆材料属性与侵彻性能的关系[J].计算力学学报, 2009, 26(3):433-436.LOU J F, HONG T, WANG Z, et al.Relations between material parameters of tungsten-alloy rod and its ballistic performance[J]. Chinese Journal of Computational Mechanics, 2009, 26(3):433-436. [9] 陈小伟, 杨世全, 何丽灵.动能侵彻弹体的质量侵蚀模型分析[J].力学学报, 2009, 41(5):739-747. doi: 10.6052/0459-1879-2009-5-2008-295CHEN X W, YANG S Q, HE L L.Modeling on mass abrasion of kinetic energy penetrator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5):739-747. doi: 10.6052/0459-1879-2009-5-2008-295 [10] 张凤国, 李维新, 洪涛, 等.超高速钨合金长杆弹对混凝土侵彻及损伤破坏的数值分析[J].弹道学报, 2008, 20(3):64-67. http://d.old.wanfangdata.com.cn/Periodical/ddxb200803016ZHANG F G, LI W X, HONG T, et al.Numerical simulation for damage and penetration of concrete driven by long-rod projectile of tungsten alloy under super-high speed[J]. Journal of Ballistics, 2008, 20(3):64-67. http://d.old.wanfangdata.com.cn/Periodical/ddxb200803016 [11] ROSENBERG Z, DEKEL E.Numerical study of the transition from rigid to eroding-rod penetration[J]. Journal de Physique Ⅳ, 2003, 110(9):681-686. [12] 王猛, 黄德斌, 曲家惠, 等.钨合金杆式弹侵彻45~#钢变形失效行为的数值分析[J].塑性工程学报, 2012, 19(2):102-106. http://d.old.wanfangdata.com.cn/Periodical/sxgcxb201202021WANG M, HUANG D B, QU J H, et al.Simulation on the deformation and fracture of long-rod projectile of tungsten alloy penetrating into 45~# steel[J]. Journal of Plasticity Engineering, 2012, 19(2):102-106. http://d.old.wanfangdata.com.cn/Periodical/sxgcxb201202021 [13] 王政, 楼建锋, 勇珩, 等.岩石、混凝土和土抗侵彻能力数值计算与分析[J].高压物理学报, 2010, 24(3):175-180. doi: 10.11858/gywlxb.2010.03.003WANG Z, LOU J F, YONG H, et al.Numerical computation and analysis on anti-penetration capability of rock, concrete and soil[J]. Chinese Journal of High Pressure Physics, 2010, 24(3):175-180. doi: 10.11858/gywlxb.2010.03.003 [14] 练兵, 蒋建伟, 门建兵, 等.高速长杆弹对混凝土靶侵彻规律的仿真分析[J].高压物理学报, 2010, 24(5):377-382. doi: 10.11858/gywlxb.2010.05.010LIAN B, JIANG J W, MEN J B, et al.Simulation analysis on law of penetration of long-rod projectiles with high speed into concrete[J]. Chinese Journal of High Pressure Physics, 2010, 24(5):377-382. doi: 10.11858/gywlxb.2010.05.010 [15] WALKER J D, ANDERSON C E.A time-dependent model for long-rod penetration[J]. International Journal of Impact Engineering, 1995, 16(1):19-48. doi: 10.1016/0734-743X(94)00032-R [16] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, 1983, 21: 541-547. [17] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin, 1999. [18] JOHNSON G R, HOLMQUIST T J.Response of boron carbide subjected to large strains, high strain rates, and high pressures[J]. Journal of Applied Physics, 1999, 85(12):8060-8073. doi: 10.1063/1.370643 [19] 兰彬. 长杆弹侵彻半无限靶的数值模拟和理论研究[D]. 合肥: 中国科学技术大学, 2008. [20] 李磊, 张先锋, 吴雪, 等.不同硬度30CrMnSiNi2A钢的动态本构与损伤参数[J].高压物理学报, 2016, 31(3):239-248. http://www.gywlxb.cn/CN/abstract/abstract1954.shtmlLI L, ZHANG X F, WU X, et al.Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses[J]. Chinese Journal of High Pressure Physics, 2016, 31(3):239-248. http://www.gywlxb.cn/CN/abstract/abstract1954.shtml [21] 李磊. 不同硬度30CrMnSiNi2A钢动态本构与损伤参数研究[D]. 南京: 南京理工大学, 2017. [22] STEINBERG D.Equation of state and strength properties of selected materials[M]. Livermore, CA:Lawrence Livermore National Laboratory, 1996. [23] 陈小伟.穿甲/侵彻问题的若干工程研究进展[J].力学进展, 2009, 39(3):316-351. doi: 10.6052/1000-0992-2009-3-J2007-090CHEN X W.Advances in the penetration/perforation of rigid projectiles[J]. Advances in Mechanics, 2009, 39(3):316-351. doi: 10.6052/1000-0992-2009-3-J2007-090 [24] 王可慧, 耿宝刚, 初哲, 等.弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究[J].高压物理学报, 2014, 28(1):61-68. doi: 10.11858/gywlxb.2014.01.010WANG K H, GENG B G, CHU Z, et al.Experimental studies on structural response and mass loss of high velocity projectiles penetrating into reinforced concrete targets[J]. Chinese Journal of High Pressure Physics, 2014, 28(1):61-68. doi: 10.11858/gywlxb.2014.01.010 [25] 沈俊, 徐翔云, 何翔, 等.弹体高速侵彻岩石效应试验研究[J].岩石力学与工程学报, 2010, 29(增刊2):4207-4212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2106SHEN J, XU X Y, HE X, et al.Experimental study of effect of rock targets penetrated by high-velocity projectiles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Suppl 2):4207-4212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2106 [26] MATUSKA D A. HULL users' manual: AFATL-TR-84-59[R]. Florida: Air Force Armament Laboratory, 1984. [27] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin, 1999. [28] AI H A, AHRENS T J.Simulation of dynamic response of granite:a numerical approach of shock-induced damage beneath impact craters[J]. International Journal of Impact Engineering, 2006, 33(1):1-10. https://www.sciencedirect.com/science/article/pii/S0734743X06001710