Simulation Analysis of Influence of Spoiler Structural Parameters on Shock Wave Attenuation Characteristics
-
摘要: 在坑道内设置扰流板是加速爆炸冲击波衰减的有效方法。为探究扰流板结构参数对冲击波衰减特性的影响,采用ANSYS/LS-DYNA有限元软件进行仿真研究。基于流固耦合算法,建立Schardin实验等比模型,所得仿真结果与实验结果具有良好的一致性,验证了仿真模型的有效性。以某发射井坑道为研究对象,在矩形扰流板宽度一定的情况下,研究了扰流板厚度、倾角及间距对冲击波衰减规律的影响。结果表明:保持其他参数不变,随着扰流板厚度增加,冲击波超压衰减越来越明显;扰流板厚度为40 cm时,倾角为105°、间距为6 m最有利于冲击波衰减。研究结果可以为坑道防护设计提供有价值的参考。Abstract: Setting spoilers in the tunnel is an effective way to accelerate its shock wave attenuation.In order to investigate the influence of the spoiler structural parameters on its shock wave's attenuation, numerical simulation was carried out using the ANSYS/LS-DYNA finite element software.First, based on the fluid-solid coupling algorithm, the equal scale model of Schardin's experiment was established.The simulation results were found to be in good agreement with the experimental results, which verified the validity of the simulation model.Then the numerical method was used to investigate the influence of the spoiler thickness, inclination angle and interval on the shock wave attenuation in a silo tunnel when the rectangular spoiler width was a constant.The results show that when the other parameters remain the same, with the increase of the spoiler thickness, the overpressure attenuation of the shock wave becomes increasingly more obvious.When the spoiler thickness is 40 cm, the spoiler with the inclination angle of 105° and the interval of 6 m is the most beneficial condition for the shock wave attenuation.These results can provide valuable reference for the design of the tunnel protection.
-
Key words:
- spoiler /
- shock wave /
- attenuation /
- numerical simulation
-
表 1 空气的材料参数
Table 1. Material parameters of air
ρ/(kg·m-3) C1 C2 C3 C4 C5 C6 E0/MPa V0 1.29 0 0 0 0.4 0.4 0 0.25 1.0 表 2 三角楔的材料参数
Table 2. Material parameters of triangular wedge
ρ/(g·cm-3) G/MPa E/MPa ν AJ-C/MPa BJ-C/MPa CJ-C N Tm/K 7.83 0.30 0 0.25 496 434 0.014 0.26 1 788 表 3 壁面的材料参数
Table 3. Material parameters of the wall surface
ρ/(g·cm-3) E/GPa ν Rm/MPa σc/MPa η/(Pa·s) σs/MPa 2.70 25 0.30 3.10 14.48 0 28.96 表 4 不同扰流板厚度下单元的峰值超压
Table 4. Peak overpressure of units with different spoiler thickness
ds/cm pA1/MPa pB1/MPa pC1/MPa 10 0.457 0.323 0.597 20 0.451 0.320 0.588 30 0.442 0.317 0.581 40 0.434 0.315 0.577 50 0.425 0.313 0.570 60 0.421 0.310 0.564 70 0.416 0.309 0.562 80 0.413 0.307 0.558 -
[1] 于文华, 张亚栋.爆炸冲击波在坑道内传播规律研究[J].爆破器材, 2013, 42(3):1-4. http://www.cnki.com.cn/Article/CJFDTotal-BPQC201303002.htmYU W H, ZHANG Y D.Study on propagation laws of explosion shock wave in tunnels[J]. Explosive Materials, 2013, 42(3):1-4. http://www.cnki.com.cn/Article/CJFDTotal-BPQC201303002.htm [2] 刘晶波, 闫秋实, 伍俊.坑道内爆炸冲击波传播规律的研究[J].振动与冲击, 2013, 28(6):8-11. http://d.wanfangdata.com.cn/Periodical_zdycj200906003.aspxLIU J B, YAN Q S, WU J.Analysis of blast wave propagation inside tunnels[J]. Journal of Vibration and Shock, 2013, 28(6):8-11. http://d.wanfangdata.com.cn/Periodical_zdycj200906003.aspx [3] 覃彬, 张奇, 向聪, 等.数值模拟研究分叉巷道中冲击波传播规律[J].含能材料, 2008, 16(6):741-744. http://d.wanfangdata.com.cn/Periodical_hncl200806024.aspxQIN B, ZHANG Q, XIANG C, et al.Numerical simulation research on shock wave propagation characteristics inside branch tunnel[J]. Chinese Journal of Energetic Materials, 2008, 16(6):741-744. http://d.wanfangdata.com.cn/Periodical_hncl200806024.aspx [4] 王启睿, 张晓忠, 孔福利, 等.多级穿廊结构坑道口部内爆炸冲击波传播规律的实验研究[J].爆炸与冲击, 2011, 31(5):449-454. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201105002.htmWANG Q R, ZHANG X Z, KONG F L, et al.Shock wave propogation of an explosion inside its entrance to a multilevel gallery tunnel[J]. Explosion and Shock Wave, 2011, 31(5):449-454. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201105002.htm [5] 杨科之, 周布奎, 王安宝, 等.坑道中扰流板对化爆冲击波的衰减作用[J].防护工程, 2010, 32(5):58-61. http://www.cqvip.com/QK/96961X/200802/27562137.htmlYANG K Z, ZHOU B K, WANG A B, et al.Attenuation effect of the interference plate on explosion shock wave inside a tunnel[J]. Protective Engineering, 2010, 32(5):58-61. http://www.cqvip.com/QK/96961X/200802/27562137.html [6] SHA S, CHEN Z H, JIANG X H.Influence of obstacle geometries on shock wave attenuation[J]. Shock Waves, 2014, 24:573-582. doi: 10.1007/s00193-014-0520-9 [7] TAKAYAMA K. Attenuation of shock waves propagating over arrayed spheres[C]//Proceedings of 24th International Congress High-Speed Photography and Photonic. Sendai, Japan, 2000: 582-588. [8] BERGER S, SADOT O, BEN-DOR G.Experimental investigation on the shock wave load attenuation by geometrical means[J]. Shock Waves, 2010, 20:29-40. doi: 10.1007/s00193-009-0237-3 [9] 朱建, 王曙光, 陆伟东.坑道内挡板对化爆冲击波消减作用的数值模拟[J].爆破, 2008, 25(2):26-29. http://www.cqvip.com/QK/96961X/200802/27562137.htmlZHU J, WANG S G, LU W D.Numerical simulation of the pressure attenuation of chemical shock wave in tunnel with baffles[J]. Blasting, 2008, 25(2):26-29. http://www.cqvip.com/QK/96961X/200802/27562137.html [10] 沙莎, 陈志华, 张焕好, 等.Schardin问题的数值研究[J].物理学报, 2012, 61(6):1-8. http://d.wanfangdata.com.cn/Periodical_wlxb201206055.aspxSHA S, CHEN Z H, ZHANG H H, et al.Numerical investigations on the Schardin's problem[J]. Acta Phyisca Sinica, 2012, 61(6):1-8. http://d.wanfangdata.com.cn/Periodical_wlxb201206055.aspx [11] Livemore Software Technology Corporation.LS-DYNA keyword use's manual[M]. California:Livemore Software Technology Corporation, 2003. [12] 李祥春, 聂百胜, 杨春丽, 等.封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响[J].高压物理学报, 2017, 31(2):135-144. doi: 10.11858/gywlxb.2017.02.005LI X C, NIE B S, YANG C L, et al.Effect of gas concentration on kinetic characteristics of gas explosion in confined space[J]. Chinese Journal of High Pressure Physics, 2017, 31(2):135-144. doi: 10.11858/gywlxb.2017.02.005