Explosion Characteristics of RP-3 Aviation Kerosene Ignited by a High Explosive
-
摘要: 为进一步探究影响RP-3航空煤油燃爆特性参数的因素,在内径为200 mm、高度为5 400 mm的立式激波管中,采用强点火方式,测定了其在不同浓度下的临界起爆能以及不同起爆能量、浓度当量比、喷雾压力下RP-3航空煤油的爆速和爆压。实验结果表明:航空煤油的临界起爆能随浓度当量比的增加先急剧降低,达到最小值后又缓慢上升,基本呈“L”形变化;在喷雾压力为0.20~0.60 MPa、同一浓度条件下,RP-3航空煤油的爆速、爆压随喷雾压力的变化曲线呈倒“U”形;随着起爆能量升高,爆速、爆压均呈直线上升趋势,并且当起爆能量小于1.68 MJ/m2时,煤油未达到直接爆轰状态;燃料的爆速、爆压随浓度当量比的增加先上升后下降,其变化趋势也基本呈倒“U”形。Abstract: In this study, the deflagration and detonation parameters of RP-3 aviation kerosene in a vertical shock tube, 200 mm in inner diameter and 5 400 mm in height, was measured at different initiation energies, spray pressures and equivalence ratios in direct ignition by a high explosive to further explore the influencing factors of the combustion characteristics of the RP-3 aviation kerosene.The results show that the critical initiation energy of the aviation kerosene decreases sharply at first and then rises slowly with the increase of the equivalence ratio, and its changing trends are basically in an "L" shape.When the spray pressure varies from 0.20 MPa to 0.60 MPa, the detonation velocity and the explosion pressure are both in the shape of an inverted "U" along with the changing of the spray pressure at the same fuel concentration.The detonation velocity and the explosion pressure curves have a linear ascending tendency with the increase of the initiation energy.Moreover, when the initiation energy ranges from 0.37 MJ/m2 to 1.68 MJ/m2, the aviation kerosene cannot reach the state of detonation.The detonation velocity and the explosion pressure of the fuel at first increase and then decrease along with the rising of the equivalence ratio, also in an inverted "U" shape.
-
表 1 RP-3航空煤油组分
Table 1. Components of RP-3 aviation kerosene
(%) Alkanes Naphthenes Alkyl
benzenesIndan &
tetralinNaphthalene Naphthalene
derivativesMonocyclic Bicyclic Tricyclic 52.2 33.8 6.0 0.1 5.1 1.3 0.6 0.9 表 2 RP-3航空煤油主要理化特性
Table 2. Physicochemical characteristics of RP-3 kerosene
Molecular formula Molecular weight Density at 20 ℃/(g·cm-3) Boiling point/℃ Condensation point/℃ Smoke point/℃ Theoretical
air-fuel ratioLatent heat of
vaporization
/(J·g-1)Low heating
value/(kJ·m-3)Cetane index C7-C16 148.33 0.79 185 -60 24.6 16 345 43 200 43 表 3 药量与起爆能量
Table 3. Mass and output energy of ignited materials
Initiation source E/kJ E1/(MJ·m-2) 1D 5.94 0.19 1D+1 g C4 11.78 0.37 1D+2 g C4 17.66 0.56 1D+3 g C4 23.53 0.75 1D+5 g C4 35.25 1.12 1D+8 g C4 52.82 1.68 表 4 不同浓度当量比下航空煤油-空气云雾的临界起爆能
Table 4. Minimum ignition energy of aviation kerosene cloud with different equivalence ratios
φ V/mL E1, min/(MJ·m-2) 0.46 19.5 0.82 0.91 39.0 0.23 1.28 54.6 0.21 1.52 65.0 0.29 1.98 84.5 0.35 表 5 不同起爆能量条件下的实验结果
Table 5. Experimental results under different initiation energy conditions
E1/(MJ·m-2) Pressure/MPa pave/MPa Velocity/(m·s-1) Dave/(m·s-1) 2# 3# 4# 5# 6# 7# 3# 4# 5# 6# 7# 0.37 0.35 0.29 0.27 0.23 0.25 0.26 0.26 559 520 476 488 447 498 0.56 0.81 0.40 0.38 0.35 0.34 0.35 0.36 571 537 533 521 485 529 0.75 0.82 0.47 0.45 0.43 0.43 0.42 0.44 593 560 567 631 505 571 1.12 1.30 0.76 0.56 0.66 0.64 0.66 0.66 693 614 618 606 579 622 1.68 1.70 0.94 0.77 0.73 0.86 0.96 0.85 774 712 654 649 609 680 表 6 不同浓度当量比下的实验结果
Table 6. Experimental results under different equivalence ratio conditions
Equivalence
ratioPressure/MPa pave/MPa Velocity/(m·s-1) Dave/(m·s-1) 2# 3# 4# 5# 6# 7# 3# 4# 5# 6# 7# 0.46 1.04 0.65 0.57 0.56 0.57 0.59 0.56 639 633 609 578 548 601 0.63 1.30 0.68 0.60 0.59 0.56 0.53 0.59 651 625 600 578 546 598 0.91 1.28 0.69 0.57 0.62 0.59 0.58 0.61 667 638 611 581 546 608 1.28 1.30 0.76 0.56 0.66 0.64 0.66 0.66 693 614 618 606 579 622 1.52 1.28 0.61 0.61 0.75 0.62 0.63 0.65 632 674 606 603 559 615 1.67 1.27 0.72 0.59 0.68 0.61 0.66 0.65 638 676 625 594 558 618 1.98 1.28 0.72 0.60 0.58 0.58 0.59 0.61 659 630 600 598 565 610 -
[1] 姚广涛, 刘宏威, 杨春浩, 等.军用车辆柴油机燃用航空煤油性能研究[J].内燃机工程, 2017, 38(1):76-80. http://edu.wanfangdata.com.cn/Periodical/Detail/jsjtxyxb201405011YAO G T, LIU H W, YANG C H, et al.Study on the performance of jet fuel burned in diesel engine of military vehicle[J]. Chinese Internal Combustion Engine Engineering, 2017, 38(1):76-80. http://edu.wanfangdata.com.cn/Periodical/Detail/jsjtxyxb201405011 [2] 梁金虎, 王苏, 张灿, 等.RP-3航空煤油点火特性研究[J].力学学报, 2014, 46(3):352-360. doi: 10.6052/0459-1879-13-305LIANG J H, WANG S, ZHANG C, et al.Studies on the autoignition characteristics of RP-3 aviation kerosene[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3):352-360. doi: 10.6052/0459-1879-13-305 [3] 周舟, 范玮, 靳乐, 等.单个RP-3航空煤油液滴的超临界蒸发实验研究[J].推进技术, 2016, 37(8):1422-1430. http://www.cqvip.com/QK/97609X/201608/669953817.htmlZHOU Z, FAN W, JIN L, et al.Experimental investigation on super critical evaporation of RP-3 aviation kerosene droplet[J]. Journal of Propulsion Technology, 2016, 37(8):1422-1430. http://www.cqvip.com/QK/97609X/201608/669953817.html [4] HENG Q P, JASUJA A K, LEFEBVRE A H.Influence of air and fuel flows on gas turbine sprays at high pressures[J]. Symposium on Combustion, 1996, 26(2):2757-2762. doi: 10.1016/S0082-0784(96)80113-5 [5] DAGAUT P, CATHONNET M.The ignition, oxidation, and combustion of kerosene:a review of experimental and kinetic modeling[J]. Progress in Energy & Combustion Science, 2006, 32(1):48-92. https://www.sciencedirect.com/science/article/pii/S0360128505000523 [6] LIU X L, WANG Y, ZHANG Q.A study of the explosion parameters of vapor-liquid two-phase JP-10/air mixtures[J]. Fuel, 2016, 165:279-288. doi: 10.1016/j.fuel.2015.10.081 [7] 范学军, 俞刚.大庆RP-3航空煤油热物性分析[J].推进技术, 2006, 27(2):187-192. http://www.docin.com/p-1111742553.htmlFAN X J, YU G.Analysis of thermo-physical properties of Daqing RP-3 aviation kerosene[J]. Journal of Propulsion Technology, 2006, 27(2):187-192. http://www.docin.com/p-1111742553.html [8] 刘宇, 曾文, 马洪安, 等.氢气添加对RP-3航空煤油着火特性的影响[J].推进技术, 2016, 37(9):1742-1751. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201609019.htmLIU Y, ZENG W, MA H A, et al.Effects of hydrogen addition on ignition characteristics of RP-3 kerosene[J]. Journal of Propulsion Technology, 2016, 37(9):1742-1751. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201609019.htm [9] 朱玉红, 余彩香, 李子木, 等.航空燃料超临界热裂解过程中焦炭的形[J].石油化工, 2006, 35(12):1151-1155. doi: 10.3321/j.issn:1000-8144.2006.12.007ZHU Y H, YU C X, LI Z M, et al.Formation of coke in thermal cracking of jet fuel under super critical conditions[J]. Petrochemical Technology, 2006, 35(12):1151-1155. doi: 10.3321/j.issn:1000-8144.2006.12.007 [10] WANG H, SUN X, RAO G, et al.The critical energy of direct initiation in liquid fuel-air and liquid fuel-RDX powder-air mixtures in a vertical detonation tube[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4):597-603. doi: 10.1002/prep.201300177 [11] 黄勇, 解立峰, 鲁长波, 等.柴油云雾最小点火能量的实验研究[J].高压物理学报, 2015, 29(2):149-154. doi: 10.11858/gywlxb.2015.02.010HUANG Y, XIE L F, LU C B, et al.Experimental study on minimum ignition energy of diesel-air cloud[J]. Chinese Journal of High Pressure Physics, 2015, 29(2):149-154. doi: 10.11858/gywlxb.2015.02.010 [12] PENG L, GAO X, MANNAN M S.Prediction of minimum ignition energy of aerosols using flame kernel modeling combined with flame front propagation theory[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(1):103-113. doi: 10.1016/j.jlp.2011.07.006 [13] 姚干兵. 液态碳氢燃料云雾爆轰及其抑制与泄放研究[D]. 南京: 南京理工大学, 2006: 16-18.YAO G B. Investigation on detonation characteristics of liquid fuel-air mixtures, explosion suppression and venting[D]. Nanjing: Nanjing University of Science & Technology, 2006: 16-18. [14] 李俊, 鲁长波, 安高军, 等.汽油、甲醇汽油和乙醇汽油燃爆特性的对比研究[J].中国安全科学学报, 2016, 26(8):64-68. http://d.old.wanfangdata.com.cn/Periodical/zgaqkxxb201608012LI J, LU C B, GAO A J, et al.Comparative study on combustion and explosion characteristics of gasoline, methanol-gasoline and ethanol-gasoline[J]. Chinese Science Safety Journal, 2016, 26(8):64-68. http://d.old.wanfangdata.com.cn/Periodical/zgaqkxxb201608012 [15] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京:兵器工业出版社, 2009:4-5.ZHANG B P, ZHANG Q M, HUANG F L.Detonation physics[M]. Beijing:The Publishing House of Ordnance Industry, 2009:4-5.