Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure

LI Xiaoyang LU Yang YAN Hao

LI Xiaoyang, LU Yang, YAN Hao. Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571
Citation: LI Xiaoyang, LU Yang, YAN Hao. Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571
李晓阳, 陆阳, 晏浩. 高压下六方TaSi2晶体基于结构稳定性的电学输运性质[J]. 高压物理学报, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571
引用本文: 李晓阳, 陆阳, 晏浩. 高压下六方TaSi2晶体基于结构稳定性的电学输运性质[J]. 高压物理学报, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571

Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure

doi: 10.11858/gywlxb.20170571
Funds: 

National Natural Science Foundation of China U1530402

More Information
    Author Bio:

    LI Xiaoyang(1991—), male, master, major in condensed matter physics.E-mail:xiaoyang.li@hpstar.ac.cn

    Corresponding author: YAN Hao(1975—), male, doctor, major in condensed matter physics.E-mail:yanhao@hpstar.ac.cn
  • 摘要: 作为一类稳定的低电阻及高温材料,二硅化钽(TaSi2)被广泛应用于集成电路中。因此,其电学稳定性和结构稳定性同样重要。报导了高压下六方TaSi2晶体基于结构稳定性的电学输运性质。通过同步辐射X射线衍射和拉曼光谱实验研究了TaSi2晶体在压力高达20 GPa时稳定的结晶学结构,并通过原位高压电阻测量发现,当压力增加到16.3 GPa时,TaSi2的电阻率趋于稳定在2 μΩ·cm左右;进一步理论计算了压力下TaSi2的电子结构,以进一步理解其金属性行为。

     

  • Figure  1.  (a) Crystal structure of TaSi2 in ambient conditions; (b) Synchrotron XRD patterns of TaSi2 during compression and decompression; (c) Refinement of TaSi2 XRD data at 1.0 GPa

    Figure  2.  (a) Pressure-dependent lattice parameters of TaSi2(a0=0.478 4 nm, c0=0.657 0 nm); (b) Evolution of the normalized lattice parameters and volume with pressure for TaSi2; (c) Pressure-dependent unit cell volume of TaSi2

    Figure  3.  (a) Pressure-dependent Raman spectra of TaSi2 at room temperature; (b) Pressure-dependent Raman peaks (A3 and A4) of TaSi2 derived from the Raman spectra

    Figure  4.  The resistivity of TaSi2 under pressure at room temperature (The inset (upper right) is a photograph of the four-probe microcircuit in the diamond anvil cell.)

    Figure  5.  Calculated band structure of TaSi2 at (a) 0 GPa and (b) 15 GPa

    Table  1.   Rietveld refinement results of TaSi2 under low pressure and high pressure

    Pressure/GPa Atom type Fractional coordinates
    1 Ta (0.5, 0, 0)
    1 Si (0.16 148 66, 0.32 296 3, 0)
    20 Ta (0.5, 0.32 296 30, 0)
    20 Si (0.17 069 90, 0.34 138 9, 0)
    下载: 导出CSV
  • [1] SUBRAHMANYAM J, RAO R M.Combustion synthesis of MoSi2, WSi2 alloys[J]. Materials Science & Engineering A, 1994, 183(1/2):205-210.
    [2] ITO K, YANO T, NAKAMOTO T, et al.Microstructure and mechanical properties of MoSi2 single crystals and directionally solidified MoSi2-based alloys[J]. Progress in Materials Science, 1997, 42(1/2/3/4):193-207. http://www.osti.gov/scitech/biblio/5226139
    [3] ITO K, NAKAMOTO T, INUI H, et al. Stacking faults on (001) in transition-metal disilicides with the cllb structure[C]//MRS Proceedings. Cambridge: Cambridge University Press, 1996, 460: 599.
    [4] HAO J, ZOU B, ZHU P W, et al.In situ X-ray observation of phase transitions in MgSi under high pressure[J]. Solid State Communications, 2009, 149(17):689-692.
    [5] SCHULTES G, SCHMITT M, GOETTEL D, et al.Strain sensitivity of TiB2, TiSi2, TaSi2 and WSi2 thin films as possible candidates for high temperature strain gauges[J]. Sensors & Actuators A:Physical, 2006, 126(2):287-291.
    [6] SCHMITT A L, HIGGINS J M, SZCZECH J R, et al.Synthesis and applications of metal silicide nanowires[J]. Journal of Materials Chemistry, 2009, 20(2):223-235.
    [7] JIANG D E, CARTER E A.First-principles study of the interfacial adhesion between SiO2 and MoSi2[J]. Physical Review B, 2005, 72(16):165410. doi: 10.1103/PhysRevB.72.165410
    [8] LAVOIE C, D'HEURLE F M, DETAVERNIER C, et al.Towards implementation of a nickel silicide process for CMOS technologies[J]. Microelectronic Engineering, 2003, 70(2/3/4):144-157.
    [9] NAGASE T, YAMAUCHI I, OHNAKA I.Effect of rapid solidification on microstructure of various Fe29.5-xSi70.5-x (0.0≤x≤3.7) alloys[J]. Journal of Alloys & Compounds, 2000, 312(1):295-301.
    [10] ZHANG S L, ÖSTLING M. Metal silicides in CMOS technology:past, present, and future trends[J]. Critical Reviews in Solid State & Materials Sciences, 2003, 28(1):1-129. doi: 10.1080/10408430390802431?scroll=top&needAccess=true
    [11] LI C Y, YU Z H, LIU H Z, et al.High pressure and high temperature in situ X-ray diffraction study on the structural stability of tantalum disilicide[J]. Solid State Communications, 2013, 157:1-5. doi: 10.1016/j.ssc.2012.12.020
    [12] KNOEDLER C M, DOUGLASS D H.Superconductivity in NbGe2, and isostructural C-40 compounds[J]. Journal of Low Temperature Physics, 1979, 37(1/2):189-218. http://www.osti.gov/scitech/biblio/6231613-superconductivity-nbge-sub-isostructural-compounds
    [13] GOTTLIEB U, LASJAUNIAS J C, THOLENCE J L, et al.Superconductivity in TaSi2 single crystals[J]. Physical Review B, 1992, 45(9):4803-4806. doi: 10.1103/PhysRevB.45.4803
    [14] NAVA F, MAZZEGA E, MICHELINI M, et al.Analysis of the electrical resistivity of Ti, Mo, Ta, and W monocrystalline disilicides[J]. Journal of Applied Physics, 1989, 65(4):1584-1590. doi: 10.1063/1.342949
    [15] ABU-SAMAHA F S, DARWISH A A A, MANSOUR A N.Temperature dependent of the current-voltage (I-V) characteristics of TaSi2 /n-Si structure[J]. Materials Science in Semiconductor Processing, 2013, 16(6):1988-1991. doi: 10.1016/j.mssp.2013.07.036
    [16] MAO H K, XU J A, BELL P M.Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B5):4673-4676. doi: 10.1029/JB091iB05p04673
    [17] HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al.Two-dimensional detector software:from real detector to idealised image or two-theta scan[J]. High Pressure Research, 1996, 14(4/5/6):14.
    [18] LARSON A C, VON DREELE R B. General structure analysis system (GSAS): LAUR 86-748[R]. USA: Los Alamos National Laboratory, 2004.
    [19] TOBY B H.EXPGUI, a graphical user interface for GSAS [J]. Journal of Applied Crystallography, 2001, 34(2):210-213. doi: 10.1107/S0021889801002242
    [20] RAMADAN A A, GOULD R D, ASHOUR A.On the Van der Pauw method of resistivity measurements [J]. Thin Solid Films, 1994, 239(2):272-275. doi: 10.1016/0040-6090(94)90863-X
    [21] SEGALL M D, LINDAN P J D, PROBERT M J, et al.First-principles simulation:ideas, illustrations and the CASTEP code [J]. Journal of Physics:Condensed Matter, 2002, 14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301
    [22] KOSOBUTSKY A V, SARKISOV S Y, BRUDNYI V N.Structural, elastic and electronic properties of GaSe under biaxial and uniaxial compressive stress[J]. Journal of Physics & Chemistry of Solids, 2013, 74(9):1240-1248. https://www.sciencedirect.com/science/article/pii/S0022369713001480
    [23] NAVA F, MAZZEGA E, MICHELINI M, et al.Analysis of the electrical resistivity of Ti, Mo, Ta, and W monocrystalline disilicides[J]. Journal of Applied Physics, 1989, 65(4):1584-1590. doi: 10.1063/1.342949
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  7083
  • HTML全文浏览量:  2957
  • PDF下载量:  146
出版历程
  • 收稿日期:  2017-04-26
  • 修回日期:  2017-05-03

目录

    /

    返回文章
    返回