Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure

LI Xiaoyang LU Yang YAN Hao

李晓阳, 陆阳, 晏浩. 高压下六方TaSi2晶体基于结构稳定性的电学输运性质[J]. 高压物理学报, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571
引用本文: 李晓阳, 陆阳, 晏浩. 高压下六方TaSi2晶体基于结构稳定性的电学输运性质[J]. 高压物理学报, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571
LI Xiaoyang, LU Yang, YAN Hao. Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571
Citation: LI Xiaoyang, LU Yang, YAN Hao. Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571

Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure

doi: 10.11858/gywlxb.20170571
Funds: 

National Natural Science Foundation of China U1530402

More Information
    Author Bio:

    LI Xiaoyang(1991—), male, master, major in condensed matter physics.E-mail:xiaoyang.li@hpstar.ac.cn

    Corresponding author: YAN Hao(1975—), male, doctor, major in condensed matter physics.E-mail:yanhao@hpstar.ac.cn
  • 摘要: 作为一类稳定的低电阻及高温材料,二硅化钽(TaSi2)被广泛应用于集成电路中。因此,其电学稳定性和结构稳定性同样重要。报导了高压下六方TaSi2晶体基于结构稳定性的电学输运性质。通过同步辐射X射线衍射和拉曼光谱实验研究了TaSi2晶体在压力高达20 GPa时稳定的结晶学结构,并通过原位高压电阻测量发现,当压力增加到16.3 GPa时,TaSi2的电阻率趋于稳定在2 μΩ·cm左右;进一步理论计算了压力下TaSi2的电子结构,以进一步理解其金属性行为。

     

  • Figure  1.  (a) Crystal structure of TaSi2 in ambient conditions; (b) Synchrotron XRD patterns of TaSi2 during compression and decompression; (c) Refinement of TaSi2 XRD data at 1.0 GPa

    Figure  2.  (a) Pressure-dependent lattice parameters of TaSi2(a0=0.478 4 nm, c0=0.657 0 nm); (b) Evolution of the normalized lattice parameters and volume with pressure for TaSi2; (c) Pressure-dependent unit cell volume of TaSi2

    Figure  3.  (a) Pressure-dependent Raman spectra of TaSi2 at room temperature; (b) Pressure-dependent Raman peaks (A3 and A4) of TaSi2 derived from the Raman spectra

    Figure  4.  The resistivity of TaSi2 under pressure at room temperature (The inset (upper right) is a photograph of the four-probe microcircuit in the diamond anvil cell.)

    Figure  5.  Calculated band structure of TaSi2 at (a) 0 GPa and (b) 15 GPa

    Table  1.   Rietveld refinement results of TaSi2 under low pressure and high pressure

    Pressure/GPa Atom type Fractional coordinates
    1 Ta (0.5, 0, 0)
    1 Si (0.16 148 66, 0.32 296 3, 0)
    20 Ta (0.5, 0.32 296 30, 0)
    20 Si (0.17 069 90, 0.34 138 9, 0)
    下载: 导出CSV
  • [1] SUBRAHMANYAM J, RAO R M.Combustion synthesis of MoSi2, WSi2 alloys[J]. Materials Science & Engineering A, 1994, 183(1/2):205-210.
    [2] ITO K, YANO T, NAKAMOTO T, et al.Microstructure and mechanical properties of MoSi2 single crystals and directionally solidified MoSi2-based alloys[J]. Progress in Materials Science, 1997, 42(1/2/3/4):193-207. http://www.osti.gov/scitech/biblio/5226139
    [3] ITO K, NAKAMOTO T, INUI H, et al. Stacking faults on (001) in transition-metal disilicides with the cllb structure[C]//MRS Proceedings. Cambridge: Cambridge University Press, 1996, 460: 599.
    [4] HAO J, ZOU B, ZHU P W, et al.In situ X-ray observation of phase transitions in MgSi under high pressure[J]. Solid State Communications, 2009, 149(17):689-692.
    [5] SCHULTES G, SCHMITT M, GOETTEL D, et al.Strain sensitivity of TiB2, TiSi2, TaSi2 and WSi2 thin films as possible candidates for high temperature strain gauges[J]. Sensors & Actuators A:Physical, 2006, 126(2):287-291.
    [6] SCHMITT A L, HIGGINS J M, SZCZECH J R, et al.Synthesis and applications of metal silicide nanowires[J]. Journal of Materials Chemistry, 2009, 20(2):223-235.
    [7] JIANG D E, CARTER E A.First-principles study of the interfacial adhesion between SiO2 and MoSi2[J]. Physical Review B, 2005, 72(16):165410. doi: 10.1103/PhysRevB.72.165410
    [8] LAVOIE C, D'HEURLE F M, DETAVERNIER C, et al.Towards implementation of a nickel silicide process for CMOS technologies[J]. Microelectronic Engineering, 2003, 70(2/3/4):144-157.
    [9] NAGASE T, YAMAUCHI I, OHNAKA I.Effect of rapid solidification on microstructure of various Fe29.5-xSi70.5-x (0.0≤x≤3.7) alloys[J]. Journal of Alloys & Compounds, 2000, 312(1):295-301.
    [10] ZHANG S L, ÖSTLING M. Metal silicides in CMOS technology:past, present, and future trends[J]. Critical Reviews in Solid State & Materials Sciences, 2003, 28(1):1-129. doi: 10.1080/10408430390802431?scroll=top&needAccess=true
    [11] LI C Y, YU Z H, LIU H Z, et al.High pressure and high temperature in situ X-ray diffraction study on the structural stability of tantalum disilicide[J]. Solid State Communications, 2013, 157:1-5. doi: 10.1016/j.ssc.2012.12.020
    [12] KNOEDLER C M, DOUGLASS D H.Superconductivity in NbGe2, and isostructural C-40 compounds[J]. Journal of Low Temperature Physics, 1979, 37(1/2):189-218. http://www.osti.gov/scitech/biblio/6231613-superconductivity-nbge-sub-isostructural-compounds
    [13] GOTTLIEB U, LASJAUNIAS J C, THOLENCE J L, et al.Superconductivity in TaSi2 single crystals[J]. Physical Review B, 1992, 45(9):4803-4806. doi: 10.1103/PhysRevB.45.4803
    [14] NAVA F, MAZZEGA E, MICHELINI M, et al.Analysis of the electrical resistivity of Ti, Mo, Ta, and W monocrystalline disilicides[J]. Journal of Applied Physics, 1989, 65(4):1584-1590. doi: 10.1063/1.342949
    [15] ABU-SAMAHA F S, DARWISH A A A, MANSOUR A N.Temperature dependent of the current-voltage (I-V) characteristics of TaSi2 /n-Si structure[J]. Materials Science in Semiconductor Processing, 2013, 16(6):1988-1991. doi: 10.1016/j.mssp.2013.07.036
    [16] MAO H K, XU J A, BELL P M.Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B5):4673-4676. doi: 10.1029/JB091iB05p04673
    [17] HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al.Two-dimensional detector software:from real detector to idealised image or two-theta scan[J]. High Pressure Research, 1996, 14(4/5/6):14.
    [18] LARSON A C, VON DREELE R B. General structure analysis system (GSAS): LAUR 86-748[R]. USA: Los Alamos National Laboratory, 2004.
    [19] TOBY B H.EXPGUI, a graphical user interface for GSAS [J]. Journal of Applied Crystallography, 2001, 34(2):210-213. doi: 10.1107/S0021889801002242
    [20] RAMADAN A A, GOULD R D, ASHOUR A.On the Van der Pauw method of resistivity measurements [J]. Thin Solid Films, 1994, 239(2):272-275. doi: 10.1016/0040-6090(94)90863-X
    [21] SEGALL M D, LINDAN P J D, PROBERT M J, et al.First-principles simulation:ideas, illustrations and the CASTEP code [J]. Journal of Physics:Condensed Matter, 2002, 14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301
    [22] KOSOBUTSKY A V, SARKISOV S Y, BRUDNYI V N.Structural, elastic and electronic properties of GaSe under biaxial and uniaxial compressive stress[J]. Journal of Physics & Chemistry of Solids, 2013, 74(9):1240-1248. https://www.sciencedirect.com/science/article/pii/S0022369713001480
    [23] NAVA F, MAZZEGA E, MICHELINI M, et al.Analysis of the electrical resistivity of Ti, Mo, Ta, and W monocrystalline disilicides[J]. Journal of Applied Physics, 1989, 65(4):1584-1590. doi: 10.1063/1.342949
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  7017
  • HTML全文浏览量:  2935
  • PDF下载量:  146
出版历程
  • 收稿日期:  2017-04-26
  • 修回日期:  2017-05-03

目录

    /

    返回文章
    返回