Numerical Simulation of the Three-Wave Point of RDX-Based Aluminized Explosives
-
摘要: 为研究含铝炸药近地空中爆炸的三波点特性,利用ANSYS/AUTODYN显式有限元程序,对3种RDX基含铝炸药HL-01(RDXph)、HL-02(85% RDXph+15% Al)和HL-03(70% RDXph+30% Al)空中爆炸过程进行了模拟。结果表明:计算得到的压力时程曲线与实测压力时程曲线较吻合,且在不同位置处的超压值也接近实验值,说明所建立的模型及状态方程参数选取合理;与经验图表法的对比说明,基于爆热当量的经验图表法不适用于含铝炸药三波点高度的计算,而用数值模拟方法可以较好地获得含铝炸药的三波点高度;同一爆炸高度下,3种炸药的三波点高度由大到小依次为HL-03、HL-02、HL-01;对于同种炸药,三波点高度随着爆炸高度的减小而增加。Abstract: To identify the properties of the three-wave point for aluminized explosives in the near-earth air blast, we simulated the explosion process of 3 kinds of RDX-based aluminized explosives, i.e. HL-01 (RDXph), HL-02 (85% RDXph+15% Al) and HL-03 (70% RDXph+30% Al), using the ANSYS/AUTODYN software.The results show that the pressure histories and the near-earth overpressures obtained from the simulation almost overlapped those measured from the experiment, indicating that the chosen model and parameters were appropriate.The comparison of the simulation results with those from the empirical chart shows that it was not suitable to calculate the height of three-wave point for aluminized explosives from the empirical chart, while it was so by simulation.At the same explosion height, the height sequence of three-wave point was HL-03 > HL-02 > HL-01.For the same explosive, the height of three-wave point increased with the decrease of the explosion height.
-
Key words:
- aluminized explosives /
- air explosion /
- numerical simulation /
- three-wave point
-
表 1 炸药JWL状态方程参数
Table 1. Parameters of JWL equation for explosives
Explosive Density/
(g·cm-3)A/
GPaB/
GPaR1 R2 ω E0/
(1010J·m-3)DCJ/
(km·s-1)pCJ/
GPaHL-01 1.673 694.52 13.75 4.55 1.30 0.49 0.96 8.325 29.39 HL-02 1.763 1 897.54 24.77 5.83 1.72 0.35 1.19 8.121 23.91 HL-03 1.865 2 225.42 27.59 5.85 1.73 0.49 1.42 7.879 20.70 表 2 HL-01的三波点高度的模拟值与经验值
Table 2. Height of three-wave point for HL-01 gained by simulation and empirical chart
X/m Height of three-wave point/m λH=0.40 m·kg-1/3 λH=0.44 m·kg-1/3 λH=0.60 m·kg-1/3 2.5 0.68 0.38 0.34 3.0 1.12 0.61 0.57 3.5 1.71 0.84 0.81 4.0 2.05 1.15 1.05 4.5 2.74 1.72 1.37 5.0 3.37 2.51 2.05 5.5 4.15 3.11 2.51 表 3 HL-02的三波点高度的模拟值与经验值
Table 3. Height of three-wave point for HL-02 gained by simulation and empirical chart
X/m Height of three-wave point/m Error between simulationand empirical values/% Simulation Empirical value 2.5 0.66 0.95 43.89 3.0 1.02 1.35 32.31 3.5 1.46 1.80 23.25 4.0 1.90 2.30 21.01 4.5 2.54 2.80 10.20 5.0 3.50 3.60 2.82 5.5 4.21 4.30 2.11 表 4 冲击波在不同位置处的波速
Table 4. Shock velocity at differentdistances from blast center
X/m Shock velocity/(m·s-1) HL-01 HL-02 HL-03 3.5 1 008 1 139 1 345 4.5 833 856 897 5.5 606 643 706 -
[1] BAKER W E.Explosions in air[M].Austin:University of Texas Press, 1973. [2] 郭炜, 俞统昌, 金朋刚.三波点的测量与实验技术研究[J].火炸药学报, 2007, 30(4):55-57, 61. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1626480GUO W, YU T C, JIN P G.Test of triple point and study on its test technology[J].Chinese Journal of Explosives & Propellants, 2007, 30(4):55-57, 61. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1626480 [3] 郝莉, 马天宝, 王成, 等.爆炸冲击波绕流的三维数值模拟研究[J].力学学报, 2010, 42(6):1042-1049. doi: 10.7511/jslx20106015HAO L, MA T B, WANG C, et al.Three dimensional numerical simulation study on the flow of the explosion shock wave around the wall[J].Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6):1042-1049. doi: 10.7511/jslx20106015 [4] 王建灵, 郭炜, 冯晓军.TNT-PBX和Hexel空中爆炸冲击波参数的实验研究[J].火炸药学报, 2008, 31(6):42-44, 68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb200806012WANG J L, GUO W, FENG X J.Experimental research on the air explosion shock wave parameters of TNT, PBX and Hexel[J].Chinese Journal of Explosives & Propellants, 2008, 31(6):42-44, 68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb200806012 [5] 北京工业学院八系.爆炸及其作用:下[M].北京:国防工业出版社, 1979:15-25.The Eighth Department of Beijing Institute of Technology.Explosions and effects:volume Ⅱ[M].Beijing:National Defense Industry Press, 1979:15-25. [6] SWISDAK M M. Explosion effects and properties. part Ⅰ. explosion effects in air: A018544[R]. New York: Naval Surface Weapons Center, 1975: 10-16. http://ci.nii.ac.jp/naid/10009854725 [7] 乔登江.空中爆炸冲击波(Ⅰ)基本理论[J].爆炸与冲击, 1985, 5(4):78-85. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200003007.htmQIAO D J.Explosion waves in air (Ⅰ) basic theory[J].Explosion and Shock Waves, 1985, 5(4):78-85. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200003007.htm [8] 郭炜, 俞统昌, 金朋刚.三波点的测量与实验技术研究[J].火炸药学报, 2007, 30(4):55-57. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1626480GUO W, YU T C, JIN P G.Test of triple point and study on its test technology[J].Chinese Journal of Explosives & Propellants, 2007, 30(4):55-57. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1626480 [9] 任会兰, 宁建国, 许香照.不同炸药量在工事中爆炸的三维数值模拟[J].高压物理学报, 2013, 27(2):216-222. doi: 10.11858/gywlxb.2013.02.008REN H L, NING J G, XU X Z.The 3D numerical simulation different explosives charges in the fortifications[J].Chinese Journal of High Pressure Physics, 2013, 27(2):216-222. doi: 10.11858/gywlxb.2013.02.008 [10] ANSYS AUTODYN manuals: version 12. 1[Z]. ANSYS Inc., 2007. [11] 辛春亮. 高能炸药爆炸能量输出结构的数值仿真[D]. 北京: 北京理工大学, 2008: 114-120.XIN C L. Numerical simulation of explosive energy output structure of high explosives[D]. Beijing: Beijing Institute of Technology, 2008: 114-120. [12] 郭攀, 刘君, 武文华.爆炸冲击载荷作用下流固耦合数值模拟[J].力学学报, 2013, 45(2):283-287. doi: 10.6052/0459-1879-12-118GUO P, LIU J, WU W H.Numerical modeling for fluid-structure intraction under blast and impact loading response[J].Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):283-287. doi: 10.6052/0459-1879-12-118 [13] LEE E, FINGER M, COLLINS W. JWL equations of state coefficients for high explosives: UCID-16189[R]. Livermore, California: Lawrence Livermore Laboratory, 1973. http://www.researchgate.net/publication/236429353_JWL_equation_of_state_coefficients_for_high_explosives [14] 陈朗, 冯长根, 黄毅民.含铝炸药圆筒试验及爆轰产物JWL状态方程研究[J].火炸药学报, 2001, 24(3):13-15. http://www.cqvip.com/QK/90400B/200103/5590806.htmlCHEN L, FENG C G, HUANG Y M.The cylinder test and JWL equation of state detontion product of aluminized explosives[J].Chinese Journal of Explosives & Propellants, 2001, 24(3):13-15. http://www.cqvip.com/QK/90400B/200103/5590806.html [15] MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion of non-ideal explosives[C]//MRS Proceedings, 1994: 413-420. http://journals.cambridge.org/article_S1946427400194527 [16] ZHOU Z Q, NIE J X, GUO X Y, et al.A new method for determining the equation of state of aluminized explosive[J].Chinese Physics Letters, 2015, 32(1):016401. doi: 10.1088/0256-307X/32/1/016401 [17] 商航. RDX含铝炸药空中爆炸特性研究[D]. 北京: 北京理工大学, 2016. [18] EXPLO5. 05 program user's guide[Z]. Zagreb, Croatia, 2010. [19] 孙业斌.军用混合炸药[M].北京:兵器工业出版社, 1969:364-369.SUN Y B.Military mixing explosives[M].Beijing:National Defense Industry Press, 1969:364-369. [20] LIN M J, MA H H, SHEN Z W, et al.Effect of aluminum fiber content on the underwater explosion performance of RDX-based explosives[J].Propellants, Explosives, Pyrotechnics, 2014, 39(2):230-235. doi: 10.1002/prep.201300091