RDX基含铝炸药三波点高度的数值模拟

段晓瑜 郭学永 聂建新 王秋实 焦清介

段晓瑜, 郭学永, 聂建新, 王秋实, 焦清介. RDX基含铝炸药三波点高度的数值模拟[J]. 高压物理学报, 2018, 32(3): 035101. doi: 10.11858/gywlxb.20170539
引用本文: 段晓瑜, 郭学永, 聂建新, 王秋实, 焦清介. RDX基含铝炸药三波点高度的数值模拟[J]. 高压物理学报, 2018, 32(3): 035101. doi: 10.11858/gywlxb.20170539
DUAN Xiaoyu, GUO Xueyong, NIE Jianxin, WANG Qiushi, JIAO Qingjie. Numerical Simulation of the Three-Wave Point of RDX-Based Aluminized Explosives[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035101. doi: 10.11858/gywlxb.20170539
Citation: DUAN Xiaoyu, GUO Xueyong, NIE Jianxin, WANG Qiushi, JIAO Qingjie. Numerical Simulation of the Three-Wave Point of RDX-Based Aluminized Explosives[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035101. doi: 10.11858/gywlxb.20170539

RDX基含铝炸药三波点高度的数值模拟

doi: 10.11858/gywlxb.20170539
详细信息
    作者简介:

    段晓瑜(1990-), 女, 博士, 主要从事含铝炸药爆炸作用研究.E-mail:dxy900401@163.com

    通讯作者:

    郭学永(1975—), 男,博士,副研究员,主要从事含能材料爆炸特性研究.E-mail:nust@bit.edu.cn

  • 中图分类号: O384

Numerical Simulation of the Three-Wave Point of RDX-Based Aluminized Explosives

  • 摘要: 为研究含铝炸药近地空中爆炸的三波点特性,利用ANSYS/AUTODYN显式有限元程序,对3种RDX基含铝炸药HL-01(RDXph)、HL-02(85% RDXph+15% Al)和HL-03(70% RDXph+30% Al)空中爆炸过程进行了模拟。结果表明:计算得到的压力时程曲线与实测压力时程曲线较吻合,且在不同位置处的超压值也接近实验值,说明所建立的模型及状态方程参数选取合理;与经验图表法的对比说明,基于爆热当量的经验图表法不适用于含铝炸药三波点高度的计算,而用数值模拟方法可以较好地获得含铝炸药的三波点高度;同一爆炸高度下,3种炸药的三波点高度由大到小依次为HL-03、HL-02、HL-01;对于同种炸药,三波点高度随着爆炸高度的减小而增加。

     

  • 图  传感器布置示意

    Figure  1.  Distribution of sensors

    图  计算模型

    Figure  2.  Simulation model

    图  HL-01的峰值超压-爆心距曲线

    Figure  3.  Overpressures of HL-01 vs.distance from blast center

    图  HL-02的冲击波超压-爆心距曲线

    Figure  4.  Overpressures of HL-02 vs.distance from blast center

    图  HL-03的冲击波超压-爆心距曲线

    Figure  5.  Overpressures of HL-03 vs.distance from blast center

    图  X=9 m处3种炸药的冲击波压力时程

    Figure  6.  Pressure histories of 3 explosives at X=9 m

    图  冲击波传播过程中压力变化云图

    Figure  7.  Pressure nephogram of shockwave propagation process

    图  TNT距离地面不同高度处爆炸的三波点位置

    Figure  8.  Height of three-wave point for TNT atdifferent blasting heights

    图  不同炸药三波点高度-爆心距曲线

    Figure  9.  Height of three-wave point vs. distancefrom blast center

    图  10  不同对比炸高下三波点高度-爆心距曲线

    Figure  10.  Height of three-wave point vs. distance fromblast center at different scaled blasting heights

    表  1  炸药JWL状态方程参数

    Table  1.   Parameters of JWL equation for explosives

    Explosive Density/
    (g·cm-3)
    A/
    GPa
    B/
    GPa
    R1 R2 ω E0/
    (1010J·m-3)
    DCJ/
    (km·s-1)
    pCJ/
    GPa
    HL-01 1.673 694.52 13.75 4.55 1.30 0.49 0.96 8.325 29.39
    HL-02 1.763 1 897.54 24.77 5.83 1.72 0.35 1.19 8.121 23.91
    HL-03 1.865 2 225.42 27.59 5.85 1.73 0.49 1.42 7.879 20.70
    下载: 导出CSV

    表  2  HL-01的三波点高度的模拟值与经验值

    Table  2.   Height of three-wave point for HL-01 gained by simulation and empirical chart

    X/m Height of three-wave point/m
    λH=0.40 m·kg-1/3 λH=0.44 m·kg-1/3 λH=0.60 m·kg-1/3
    2.5 0.68 0.38 0.34
    3.0 1.12 0.61 0.57
    3.5 1.71 0.84 0.81
    4.0 2.05 1.15 1.05
    4.5 2.74 1.72 1.37
    5.0 3.37 2.51 2.05
    5.5 4.15 3.11 2.51
    下载: 导出CSV

    表  3  HL-02的三波点高度的模拟值与经验值

    Table  3.   Height of three-wave point for HL-02 gained by simulation and empirical chart

    X/m Height of three-wave point/m Error between simulationand empirical values/%
    Simulation Empirical value
    2.5 0.66 0.95 43.89
    3.0 1.02 1.35 32.31
    3.5 1.46 1.80 23.25
    4.0 1.90 2.30 21.01
    4.5 2.54 2.80 10.20
    5.0 3.50 3.60 2.82
    5.5 4.21 4.30 2.11
    下载: 导出CSV

    表  4  冲击波在不同位置处的波速

    Table  4.   Shock velocity at differentdistances from blast center

    X/m Shock velocity/(m·s-1)
    HL-01 HL-02 HL-03
    3.5 1 008 1 139 1 345
    4.5 833 856 897
    5.5 606 643 706
    下载: 导出CSV
  • [1] BAKER W E.Explosions in air[M].Austin:University of Texas Press, 1973.
    [2] 郭炜, 俞统昌, 金朋刚.三波点的测量与实验技术研究[J].火炸药学报, 2007, 30(4):55-57, 61. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1626480

    GUO W, YU T C, JIN P G.Test of triple point and study on its test technology[J].Chinese Journal of Explosives & Propellants, 2007, 30(4):55-57, 61. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1626480
    [3] 郝莉, 马天宝, 王成, 等.爆炸冲击波绕流的三维数值模拟研究[J].力学学报, 2010, 42(6):1042-1049. doi: 10.7511/jslx20106015

    HAO L, MA T B, WANG C, et al.Three dimensional numerical simulation study on the flow of the explosion shock wave around the wall[J].Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6):1042-1049. doi: 10.7511/jslx20106015
    [4] 王建灵, 郭炜, 冯晓军.TNT-PBX和Hexel空中爆炸冲击波参数的实验研究[J].火炸药学报, 2008, 31(6):42-44, 68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb200806012

    WANG J L, GUO W, FENG X J.Experimental research on the air explosion shock wave parameters of TNT, PBX and Hexel[J].Chinese Journal of Explosives & Propellants, 2008, 31(6):42-44, 68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb200806012
    [5] 北京工业学院八系.爆炸及其作用:下[M].北京:国防工业出版社, 1979:15-25.

    The Eighth Department of Beijing Institute of Technology.Explosions and effects:volume Ⅱ[M].Beijing:National Defense Industry Press, 1979:15-25.
    [6] SWISDAK M M. Explosion effects and properties. part Ⅰ. explosion effects in air: A018544[R]. New York: Naval Surface Weapons Center, 1975: 10-16. http://ci.nii.ac.jp/naid/10009854725
    [7] 乔登江.空中爆炸冲击波(Ⅰ)基本理论[J].爆炸与冲击, 1985, 5(4):78-85. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200003007.htm

    QIAO D J.Explosion waves in air (Ⅰ) basic theory[J].Explosion and Shock Waves, 1985, 5(4):78-85. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200003007.htm
    [8] 郭炜, 俞统昌, 金朋刚.三波点的测量与实验技术研究[J].火炸药学报, 2007, 30(4):55-57. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1626480

    GUO W, YU T C, JIN P G.Test of triple point and study on its test technology[J].Chinese Journal of Explosives & Propellants, 2007, 30(4):55-57. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1626480
    [9] 任会兰, 宁建国, 许香照.不同炸药量在工事中爆炸的三维数值模拟[J].高压物理学报, 2013, 27(2):216-222. doi: 10.11858/gywlxb.2013.02.008

    REN H L, NING J G, XU X Z.The 3D numerical simulation different explosives charges in the fortifications[J].Chinese Journal of High Pressure Physics, 2013, 27(2):216-222. doi: 10.11858/gywlxb.2013.02.008
    [10] ANSYS AUTODYN manuals: version 12. 1[Z]. ANSYS Inc., 2007.
    [11] 辛春亮. 高能炸药爆炸能量输出结构的数值仿真[D]. 北京: 北京理工大学, 2008: 114-120.

    XIN C L. Numerical simulation of explosive energy output structure of high explosives[D]. Beijing: Beijing Institute of Technology, 2008: 114-120.
    [12] 郭攀, 刘君, 武文华.爆炸冲击载荷作用下流固耦合数值模拟[J].力学学报, 2013, 45(2):283-287. doi: 10.6052/0459-1879-12-118

    GUO P, LIU J, WU W H.Numerical modeling for fluid-structure intraction under blast and impact loading response[J].Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):283-287. doi: 10.6052/0459-1879-12-118
    [13] LEE E, FINGER M, COLLINS W. JWL equations of state coefficients for high explosives: UCID-16189[R]. Livermore, California: Lawrence Livermore Laboratory, 1973. http://www.researchgate.net/publication/236429353_JWL_equation_of_state_coefficients_for_high_explosives
    [14] 陈朗, 冯长根, 黄毅民.含铝炸药圆筒试验及爆轰产物JWL状态方程研究[J].火炸药学报, 2001, 24(3):13-15. http://www.cqvip.com/QK/90400B/200103/5590806.html

    CHEN L, FENG C G, HUANG Y M.The cylinder test and JWL equation of state detontion product of aluminized explosives[J].Chinese Journal of Explosives & Propellants, 2001, 24(3):13-15. http://www.cqvip.com/QK/90400B/200103/5590806.html
    [15] MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion of non-ideal explosives[C]//MRS Proceedings, 1994: 413-420. http://journals.cambridge.org/article_S1946427400194527
    [16] ZHOU Z Q, NIE J X, GUO X Y, et al.A new method for determining the equation of state of aluminized explosive[J].Chinese Physics Letters, 2015, 32(1):016401. doi: 10.1088/0256-307X/32/1/016401
    [17] 商航. RDX含铝炸药空中爆炸特性研究[D]. 北京: 北京理工大学, 2016.
    [18] EXPLO5. 05 program user's guide[Z]. Zagreb, Croatia, 2010.
    [19] 孙业斌.军用混合炸药[M].北京:兵器工业出版社, 1969:364-369.

    SUN Y B.Military mixing explosives[M].Beijing:National Defense Industry Press, 1969:364-369.
    [20] LIN M J, MA H H, SHEN Z W, et al.Effect of aluminum fiber content on the underwater explosion performance of RDX-based explosives[J].Propellants, Explosives, Pyrotechnics, 2014, 39(2):230-235. doi: 10.1002/prep.201300091
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  7795
  • HTML全文浏览量:  3434
  • PDF下载量:  520
出版历程
  • 收稿日期:  2017-02-21
  • 修回日期:  2017-03-23

目录

    /

    返回文章
    返回