Influence of Specimen Size in SHPB Tests on Concrete

ZHAO Fuqi XU Peibao WEN Heming

赵福祺, 徐沛保, 文鹤鸣. SHPB混凝土实验中试件尺寸的影响[J]. 高压物理学报, 2018, 32(1): 014101. doi: 10.11858/gywlxb.20170532
引用本文: 赵福祺, 徐沛保, 文鹤鸣. SHPB混凝土实验中试件尺寸的影响[J]. 高压物理学报, 2018, 32(1): 014101. doi: 10.11858/gywlxb.20170532
ZHAO Fuqi, XU Peibao, WEN Heming. Influence of Specimen Size in SHPB Tests on Concrete[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014101. doi: 10.11858/gywlxb.20170532
Citation: ZHAO Fuqi, XU Peibao, WEN Heming. Influence of Specimen Size in SHPB Tests on Concrete[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014101. doi: 10.11858/gywlxb.20170532

Influence of Specimen Size in SHPB Tests on Concrete

doi: 10.11858/gywlxb.20170532
Funds: 

National Natural Science Foundation of China 11572317

More Information
    Author Bio:

    ZHAO Fuqi(1989—), male, doctoral student, major in impact dynamics. E-mail: zfq126@mail.ustc.edu.cn

    Corresponding author: WEN Heming(1965—), male, Ph. D, professor, major in impact dynamics. E-mail: hmwen@ustc.edu.cn
  • 摘要: 分离式霍普金森压杆(SHPB)实验常被用来获得混凝土类材料的动态压缩强度, 所得数据对建立本构方程有重要作用,因此需要对其进行正确解释或分析。利用最新的混凝土材料模型研究了SHPB实验中试件尺寸的影响。藉由混凝土试件的体积考虑动态尺寸效应的影响,并提出了一个计算由于惯性(约束)效应引起的动态增强因子的新经验公式。结果表明:新经验公式与不同尺寸混凝土的SHPB模拟结果吻合得很好,且惯性(约束)效应引起的动态增强因子随着试件尺寸的增大而增大。

     

  • Figure  1.  Finite element model of SHPB system

    Figure  2.  Loading function used in finite element analysis

    Figure  3.  Comparison of Eq.(6) with numerical results fordynamic increase factor due to inertia (confinement)effect for concrete specimens with the same volumeof different length/diameter ratios

    Figure  4.  Comparison of Eq.(6) with numerical results fordynamic increase factor due to inertia (confinement)effect for concrete specimens with different volumeof the same length/diameter ratio

    Figure  5.  Variation of normalized numericallyobtained dynamic increase factor due to inertia(confinement) effect with strain rate

    Table  1.   Material parameters of concrete[1]

    Parameters of EOS Parameters of constitutive model
    ρ0/(kg·m-3) ρs0/(kg·m-3) pcrush/MPa plock/GPa n K1/GPa K2/GPa K3/GPa Strength surface Shear damage Tensile damage Lode effect
    fc'/MPa ft/MPa B N G/GPa λs l r λm c1 c2 εfrac e1 e2 e3
    2 400 2 680 15.2 3 3 13.9 30 10 45.6 3.8 1.7 0.7 10.5 4.6 0.45 0.3 0.3 3 6.93 0.007 0.65 0.01 5
    下载: 导出CSV

    Table  2.   Load function parameters for direct compression analyses

    t1/μs t2/μs t3/μs ppeak/MPa
    25 200 25 Varies
    下载: 导出CSV

    Table  3.   Values of various parameters in Eq.(6) and Eq.(7)

    $ {{{\dot \varepsilon }_0}} $/s-1 Fi Si Wi Gi W β
    1.0 6.0 0.8 2.8 8.5 2.8 2.7
    下载: 导出CSV
  • [1] XU H, WEN H M.A computational constitutive model for concrete subjected to dynamic loadings[J].International Journal of Impact Engineering, 2016, 91:116-125. doi: 10.1016/j.ijimpeng.2016.01.003
    [2] XU H, WEN H M.Semi-empirical equations for the dynamic strength enhancement of concrete-like materials[J].International Journal of Impact Engineering, 2013, 60:76-81. doi: 10.1016/j.ijimpeng.2013.04.005
    [3] TEDESCO J W, HUGHES M L, ROSS C A.Numerical simulation of high strain rate concrete compression tests[J].Computers & Structures, 1994, 51(1):65-77. http://linkinghub.elsevier.com/retrieve/pii/004579499490037X
    [4] GROTE D L, PARK S W, ZHOU M.Dynamic behavior of concrete at high strain rates and pressures:Ⅰ.experimental characterization[J].International Journal of Impact Engineering, 2001, 25(9):869-886. doi: 10.1016/S0734-743X(01)00020-3
    [5] LI Q M, LU Y B, MENG H.Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests.Part Ⅱ:numerical simulations[J].International Journal of Impact Engineering, 2009, 36(12):1335-1345. doi: 10.1016/j.ijimpeng.2009.04.010
    [6] HAO H, TARASOV B G.Experimental study of dynamic material properties of clay brick and mortar at different strain rates[J].Australian Journal of Structural Engineering, 2008, 8(2):117-132. doi: 10.1080/13287982.2008.11464992
    [7] BISCHOFF P H, PERRY S H.Compressive behaviour of concrete at high strain rates[J].Materials & Structures, 1991, 24(6):425-450. doi: 10.1007/BF02472016
    [8] TEDESCO J W, ROSS C A.Strain-rate-dependent constitutive equations for concrete[J].Journal of Pressure Vessel Technology, 1998, 120(4):398-405. doi: 10.1115/1.2842350
    [9] ZHOU X Q, HAO H.Mesoscale modelling and analysis of damage and fragmentation of concrete slab under contact detonation[J].International Journal of Impact Engineering, 2009, 36(12):1315-1326. doi: 10.1016/j.ijimpeng.2009.02.010
    [10] COTSOVOS D M, PAVLOVIC M N.Numerical investigation of concrete subjected to compressive impact loading.Part 1:a fundamental explanation for the apparent strength gain at high loading rates[J].Computers & Structures, 2008, 86(1):145-163. https://www.sciencedirect.com/science/article/pii/S0045794907001964
    [11] HAO H, HAO Y, LI Z X. A numerical study of factors influencing high-speed impact tests of concrete material properties[C]//Proceedings of the 8th International Conference on Shock and Impact Loads on Structures. Adelaide: CI-Premier Pte Ltd, 2009: 37-52.
    [12] ZHANG M, WU H J, LI Q M, et al.Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests.Part Ⅰ:experiments[J].International Journal of Impact Engineering, 2009, 36(12):1327-1334. doi: 10.1016/j.ijimpeng.2009.04.009
    [13] FORRESTAL M J, WRIGHT T W, CHEN W.The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J].International Journal of Impact Engineering, 2007, 34(3):405-411. doi: 10.1016/j.ijimpeng.2005.12.001
    [14] ZHANG M, LI Q M, HUANG F L, et al.Inertia-induced radial confinement in an elastic tubular specimen subjected to axial strain acceleration[J].International Journal of Impact Engineering, 2010, 37(4):459-464. doi: 10.1016/j.ijimpeng.2009.09.009
    [15] HAO Y, HAO H, LI Z X.Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties[J].International Journal of Protective Structures, 2010, 1:145-168. doi: 10.1260/2041-4196.1.1.145
    [16] LI Q M, MENG H.About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J].International Journal of Solids and Structures, 2003, 40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7
    [17] HERRMANN W.Constitutive equation for the dynamic compaction of ductile porous materials[J].Journal of Applied Physics, 1969, 40(6):2490-2499. doi: 10.1063/1.1658021
    [18] HORDIJK D A. Local approach to fatigue of concrete[D]. Delft: Delft University of Technology, 1991.
    [19] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al.A plasticity concrete material model for DYNA3D[J].International Journal of Impact Engineering, 1997, 19(9):847-873. http://linkinghub.elsevier.com/retrieve/pii/S0734743X97000237
    [20] HARTMANN T, PIETZSCH A, GEBBEKEN N.A hydrocode material model for concrete[J].International Journal of Protective Structures, 2010, 1(4):443-468. doi: 10.1260/2041-4196.1.4.443
    [21] WILLAM K J, WARNKE E P.Constitutive model for the triaxial behavior of concrete[J].Proceedings of International Association for Bridge and Structural Engineering, 1975, 19(1):1-30. http://www.docin.com/p-466143542.html
    [22] HAO Y, HAO H, LI Z X.Influence of end friction confinement on impact tests of concrete material at high strain rate[J].International Journal of Impact Engineering, 2013, 60:82-106. doi: 10.1016/j.ijimpeng.2013.04.008
    [23] LI Q M, LU Y B, MENG H.Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests.Part Ⅱ:numerical simulations[J].International Journal of Impact Engineering, 2009, 36(12):1335-1345. doi: 10.1016/j.ijimpeng.2009.04.010
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  7479
  • HTML全文浏览量:  3107
  • PDF下载量:  212
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-03-24

目录

    /

    返回文章
    返回