-
摘要: 分离式霍普金森压杆(SHPB)实验常被用来获得混凝土类材料的动态压缩强度, 所得数据对建立本构方程有重要作用,因此需要对其进行正确解释或分析。利用最新的混凝土材料模型研究了SHPB实验中试件尺寸的影响。藉由混凝土试件的体积考虑动态尺寸效应的影响,并提出了一个计算由于惯性(约束)效应引起的动态增强因子的新经验公式。结果表明:新经验公式与不同尺寸混凝土的SHPB模拟结果吻合得很好,且惯性(约束)效应引起的动态增强因子随着试件尺寸的增大而增大。
-
关键词:
- 分离式霍普金森压杆实验 /
- 混凝土 /
- 惯性(约束)效应 /
- 试件尺寸效应 /
- 数值模拟
Abstract: The split Hopkinson pressure bar (SHPB) tests are often conducted to obtain the dynamic compressive strengths of concrete-like materials which need to be interpreted or analyzed correctly as these data are very important for the construction of reliable constitutive equations used in numerical simulations.In the present work, a numerical study is performed on the influence of specimen size on concrete in SHPB tests using a rate-independent material model.A new empirical equation for the dynamic increase factor due to inertia (confinement) effect is also proposed which took account of specimen size effect through its volume.It is shown that the empirical formula agrees well with the numerical results for the SHPB tests on concrete with different specimen sizes, and the dynamic increase factor due to inertia (confinement) effect increases with the increase of specimen size.-
Key words:
- SHPB test /
- concrete /
- inertia (confinement) effect /
- specimen size effect /
- numerical simulation
-
Table 1. Material parameters of concrete[1]
Parameters of EOS Parameters of constitutive model ρ0/(kg·m-3) ρs0/(kg·m-3) pcrush/MPa plock/GPa n K1/GPa K2/GPa K3/GPa Strength surface Shear damage Tensile damage Lode effect fc'/MPa ft/MPa B N G/GPa λs l r λm c1 c2 εfrac e1 e2 e3 2 400 2 680 15.2 3 3 13.9 30 10 45.6 3.8 1.7 0.7 10.5 4.6 0.45 0.3 0.3 3 6.93 0.007 0.65 0.01 5 Table 2. Load function parameters for direct compression analyses
t1/μs t2/μs t3/μs ppeak/MPa 25 200 25 Varies Table 3. Values of various parameters in Eq.(6) and Eq.(7)
$ {{{\dot \varepsilon }_0}} $/s-1 Fi Si Wi Gi W β 1.0 6.0 0.8 2.8 8.5 2.8 2.7 -
[1] XU H, WEN H M.A computational constitutive model for concrete subjected to dynamic loadings[J].International Journal of Impact Engineering, 2016, 91:116-125. doi: 10.1016/j.ijimpeng.2016.01.003 [2] XU H, WEN H M.Semi-empirical equations for the dynamic strength enhancement of concrete-like materials[J].International Journal of Impact Engineering, 2013, 60:76-81. doi: 10.1016/j.ijimpeng.2013.04.005 [3] TEDESCO J W, HUGHES M L, ROSS C A.Numerical simulation of high strain rate concrete compression tests[J].Computers & Structures, 1994, 51(1):65-77. http://linkinghub.elsevier.com/retrieve/pii/004579499490037X [4] GROTE D L, PARK S W, ZHOU M.Dynamic behavior of concrete at high strain rates and pressures:Ⅰ.experimental characterization[J].International Journal of Impact Engineering, 2001, 25(9):869-886. doi: 10.1016/S0734-743X(01)00020-3 [5] LI Q M, LU Y B, MENG H.Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests.Part Ⅱ:numerical simulations[J].International Journal of Impact Engineering, 2009, 36(12):1335-1345. doi: 10.1016/j.ijimpeng.2009.04.010 [6] HAO H, TARASOV B G.Experimental study of dynamic material properties of clay brick and mortar at different strain rates[J].Australian Journal of Structural Engineering, 2008, 8(2):117-132. doi: 10.1080/13287982.2008.11464992 [7] BISCHOFF P H, PERRY S H.Compressive behaviour of concrete at high strain rates[J].Materials & Structures, 1991, 24(6):425-450. doi: 10.1007/BF02472016 [8] TEDESCO J W, ROSS C A.Strain-rate-dependent constitutive equations for concrete[J].Journal of Pressure Vessel Technology, 1998, 120(4):398-405. doi: 10.1115/1.2842350 [9] ZHOU X Q, HAO H.Mesoscale modelling and analysis of damage and fragmentation of concrete slab under contact detonation[J].International Journal of Impact Engineering, 2009, 36(12):1315-1326. doi: 10.1016/j.ijimpeng.2009.02.010 [10] COTSOVOS D M, PAVLOVIC M N.Numerical investigation of concrete subjected to compressive impact loading.Part 1:a fundamental explanation for the apparent strength gain at high loading rates[J].Computers & Structures, 2008, 86(1):145-163. https://www.sciencedirect.com/science/article/pii/S0045794907001964 [11] HAO H, HAO Y, LI Z X. A numerical study of factors influencing high-speed impact tests of concrete material properties[C]//Proceedings of the 8th International Conference on Shock and Impact Loads on Structures. Adelaide: CI-Premier Pte Ltd, 2009: 37-52. [12] ZHANG M, WU H J, LI Q M, et al.Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests.Part Ⅰ:experiments[J].International Journal of Impact Engineering, 2009, 36(12):1327-1334. doi: 10.1016/j.ijimpeng.2009.04.009 [13] FORRESTAL M J, WRIGHT T W, CHEN W.The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J].International Journal of Impact Engineering, 2007, 34(3):405-411. doi: 10.1016/j.ijimpeng.2005.12.001 [14] ZHANG M, LI Q M, HUANG F L, et al.Inertia-induced radial confinement in an elastic tubular specimen subjected to axial strain acceleration[J].International Journal of Impact Engineering, 2010, 37(4):459-464. doi: 10.1016/j.ijimpeng.2009.09.009 [15] HAO Y, HAO H, LI Z X.Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties[J].International Journal of Protective Structures, 2010, 1:145-168. doi: 10.1260/2041-4196.1.1.145 [16] LI Q M, MENG H.About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J].International Journal of Solids and Structures, 2003, 40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7 [17] HERRMANN W.Constitutive equation for the dynamic compaction of ductile porous materials[J].Journal of Applied Physics, 1969, 40(6):2490-2499. doi: 10.1063/1.1658021 [18] HORDIJK D A. Local approach to fatigue of concrete[D]. Delft: Delft University of Technology, 1991. [19] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al.A plasticity concrete material model for DYNA3D[J].International Journal of Impact Engineering, 1997, 19(9):847-873. http://linkinghub.elsevier.com/retrieve/pii/S0734743X97000237 [20] HARTMANN T, PIETZSCH A, GEBBEKEN N.A hydrocode material model for concrete[J].International Journal of Protective Structures, 2010, 1(4):443-468. doi: 10.1260/2041-4196.1.4.443 [21] WILLAM K J, WARNKE E P.Constitutive model for the triaxial behavior of concrete[J].Proceedings of International Association for Bridge and Structural Engineering, 1975, 19(1):1-30. http://www.docin.com/p-466143542.html [22] HAO Y, HAO H, LI Z X.Influence of end friction confinement on impact tests of concrete material at high strain rate[J].International Journal of Impact Engineering, 2013, 60:82-106. doi: 10.1016/j.ijimpeng.2013.04.008 [23] LI Q M, LU Y B, MENG H.Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests.Part Ⅱ:numerical simulations[J].International Journal of Impact Engineering, 2009, 36(12):1335-1345. doi: 10.1016/j.ijimpeng.2009.04.010