Prediction of Ballistic Limit of Composite GFRP Sandwich Panels under Hypervelocity Impact
doi: 10.11858/gywlxb.20170529
-
摘要: 研究了玻璃纤维复合三明治板在圆柱形平头弹体打击下的预测弹道极限的理论预测方法。建立了玻璃纤维复合三明治板的三阶段侵彻模型,包括侵彻面板阶段、侵彻复合材料夹芯层阶段和侵彻内板阶段。基于高速弹体侵彻下靶板的局部变形假设建立了理论关系,将弹体侵彻复合材料夹心层时视为刚体处理,面板和背板的侵彻阶段考虑了弹体的墩粗效应和靶板的绝热剪切效应。基于能量平衡原理,推导了复合材料三明治板的弹道极限,并将理论计算结果与实验结果进行对比和分析,研究了不同侵彻速度、弹体质量和夹心层厚度对弹道极限的影响。结果表明,理论计算结果与实验结果具有较好的一致性。Abstract: In the present study, analytical solutions were presented for the prediction of the penetration and perforation of composite glass fiber-reinforced plastic (GFRP) sandwich panels struck normally by flat-nosed cylindrical projectiles over a wide range of impacting velocities, projectile mass and core thickness.The analysis model involved a three-stage perforation process including perforation of the front steel skin, the GFRP core, and the back steel skin.The formulation were based on assumptions that the deformations of steel skins are localized and the projectile is considered as a rigid body in the perforation of GFRP composite laminate.The energy absorption of the front and back steel skins and the GFRP core were estimated with the upsetting effect of the projectile and the adiabatic shear effect of the steel skins taken into consideration.In addition, based on the energy balance, the ballistic limit of the sandwich panel were obtained and compared with the available experimental results.The results show that the analytical predictions are in good agreement with the available experimental data.
-
Key words:
- ballistic impact /
- sandwich panel /
- glass fiber reinforced /
- ballistic limit
-
Table 1. Mechanical and geometrical properties of steel skins
hf/mm hb/mm ρf/(kg·m-3) σu/MPa n γi 6.2 10.6 7 850 779 0.586 1.4 Table 2. Comparison of ballistic limit computed by theoretical model with experimental results
Mass/g Core thickness/mm Exp. value/(m·s-1) Calc. value/(m·s-1) Error/% 40 40 753.8 831.9 10.7 30 60 1 422.9 1 402.9 ─ 40 60 1 162.7 1 132.4 2.6 50 60 974.1 958.1 1.6 50 75 879.0 1 144.7 ─ Table 3. Energy absorption ratio of composite GFRP sandwich panels under impact of flat-nosed cylindrical projectile with ballistic limit velocity
Mass/g Core thickness/mm (Efro/Eabs)/% (Ecor/Eabs)/% (Ebac/Eabs)/% 40 40 2.9 90.7 6.4 30 60 1.6 95.0 3.4 40 60 1.4 95.7 2.9 50 60 1.8 94.4 3.8 50 75 1.2 96.1 2.7 -
[1] JOHNSON W S, MASTERS J E, WILSON D W, et al.Comparison of the low and high velocity impact response of kevlar fiber-reinforced epoxy composites[J]. Journal of Composites Technology & Research, 1999, 21(4):224-229. [2] VAIDYA U K, ULVEN C, PILLAY S, et al.Impact damage of partially foam-filled co-injected honeycomb core sandwich composites[J]. Journal of Composite Materials, 2003, 37(7):611-626. doi: 10.1177/002199803029724 [3] KEPLER J.Impact penetration of sandwich panels at different velocities-an experimental parameter study:part Ⅰ-parameters and results[J]. Journal of Sandwich Structures & Materials, 2004, 6(4):357-374. doi: 10.1177/1099636204038217 [4] 曹海要, 战再吉.铜/金刚石复合材料电磁轨道烧蚀特性的实验研究[J].高压物理学报, 2016, 30(4):317-322. doi: 10.11858/gywlxb.2016.04.008CAO H Y, ZHAN Z J.Experimental study of Cu/diamond composite electromagnetic rail ablation characteristics[J]. Chinese Journal of High Pressure Physics, 2016, 30(4):317-322. doi: 10.11858/gywlxb.2016.04.008 [5] 王志刚, 徐亮, 李绪海, 等.碳化硅-金刚石超硬复合材料的弹性性质[J].高压物理学报, 2015, 29(4):263-267. doi: 10.11858/gywlxb.2015.04.004WANG Z G, XU L, LI X H, et al.Elastic property of SiC-diamond composite under hydrostatic pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(4):263-267. doi: 10.11858/gywlxb.2015.04.004 [6] LI G, JONES N.Development of rubberized syntactic foam[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(6):1483-1492. doi: 10.1016/j.compositesa.2007.01.009 [7] JOVER N, SHAFIQ B, VAIDYA U.Ballistic impact analysis of balsa core sandwich composites[J]. Composites Part B:Engneering, 2014, 67:160-169. doi: 10.1016/j.compositesb.2014.07.002 [8] NIA A A, RAZAVI S B, MAJZOOBI G H.Ballistic limit determination of aluminum honeycombs—experimental study[J]. Materials Science and Engineering A, 2008, 488(1/2):273-280. https://www.sciencedirect.com/science/article/pii/S0921509307018308 [9] WEN H M.Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes[J]. Composite Structures, 2000, 49(3):321-329. doi: 10.1016/S0263-8223(00)00064-7 [10] WEN H M.Penetration and perforation of thick FRP laminates[J]. Composites Science & Technology, 2001, 61(8):1163-1172. https://www.sciencedirect.com/science/article/pii/S0266353801000203 [11] GU B.Analytical modeling for the ballistic perforation of planar plain-woven fabric target by projectile[J]. Composites Part B:Engineering, 2003, 34(4):361-371. doi: 10.1016/S1359-8368(02)00137-3 [12] NAIK N K, DOSHI A V.Ballistic impact behaviour of thick composites:parametric studies[J]. Composite Structures, 2008, 82(3):447-464. doi: 10.1016/j.compstruct.2007.01.025 [13] NAIK N K, SHRIRAO P, REDDY B C K.Ballistic impact behaviour of woven fabric composites:formulation[J]. International Journal of Impact Engineering, 2006, 32(9):1521-1552. doi: 10.1016/j.ijimpeng.2005.01.004 [14] GAMA B A, GILLESPIE J W Jr.Punch shear based penetration model of ballistic impact of thick-section composites[J]. Composite Structures, 2008, 86(4):356-369. doi: 10.1016/j.compstruct.2007.11.001 [15] CHAN S, FAWAZ Z, BEHDINAN K, et al.Ballistic limit prediction using a numerical model with progressive damage capability[J]. Composite Structures, 2007, 77(4):466-474. doi: 10.1016/j.compstruct.2005.08.022 [16] FELI S, YAS M H, ASGARI M R.An analytical model for perforation of ceramic/multi-layered planar woven fabric targets by blunt projectiles[J]. Composite Structures, 2011, 93(2):548-556. doi: 10.1016/j.compstruct.2010.08.025 [17] SILVA M A G, CISMASIU C, CHIOREAN C G.Numerical simulation of ballistic impact on composite laminates[J]. International Journal of Impact Engineering, 2005, 31(3):289-306. doi: 10.1016/j.ijimpeng.2004.01.011 [18] GOLDSMITH W, WANG G T, LI K, et al.Perforation of cellular sandwich plates[J]. International Journal of Impact Engineering, 1997, 19(5/6):361-379. https://www.sciencedirect.com/science/article/pii/S0734743X97000031 [19] SKVORTSOV V, KEPLER J, BOZHEVOLNAYA E.Energy partition for ballistic penetration of sandwich panels[J]. International Journal of Impact Engineering, 2003, 28(7):697-716. doi: 10.1016/S0734-743X(02)00153-7 [20] ZHOU D W, STRONGE W J.Ballistic limit for oblique impact of thin sandwich panels and spaced plates[J]. International Journal of Impact Engineering, 2008, 35(11):1339-1354. doi: 10.1016/j.ijimpeng.2007.08.004 [21] RYAN S, SCHAEFER F, DESTEFANIS R, et al.A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures[J]. Advances in Space Research, 2008, 41(7):1152-1166. doi: 10.1016/j.asr.2007.02.032 [22] BUITRAGO B L, SANTIUSTE C, SANCHEZ-SAEZ S, et al.Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact[J]. Composite Structures, 2010, 92(9):2090-2096. doi: 10.1016/j.compstruct.2009.10.013 [23] GARCIA-CASTILLO S K, BUITRAGO B L, BARBERO E.Behavior of sandwich structures and spaced plates subjected to high-velocity impacts[J]. Polymer Composites, 2011, 32(2):290-296. doi: 10.1002/pc.v32.2 [24] FELI S, POUR M H N.An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact[J]. Composites Part B, 2012, 43(5):2439-2447. doi: 10.1016/j.compositesb.2011.11.028 [25] BAI Y L, JOHNSON W.Plugging:physical understanding and energy absorption[J]. Materials Science & Technology, 2013, 9(1):182-190. https://www.researchgate.net/publication/272248744_Plugging_physical_understanding_and_energy_absorption [26] LANGSETH M, LARSEN P K.The behaviour of square steel plates subjected to a circular blunt ended load[J]. International Journal of Impact Engineering, 1992, 12(4):617-638. doi: 10.1016/0734-743X(92)90271-T [27] BORVIK T, LANGSETH M, HOPPERSTAD O S, et al.Ballistic penetration of steel plates[J]. International Journal of Impact Engineering, 1999, 22(9/10):855-886. https://www.sciencedirect.com/science/article/pii/S0734743X99000111