Prediction of Ballistic Limit of Composite GFRP Sandwich Panels under Hypervelocity Impact

LI Siyu LI Xiaobin ZHAO Pengduo GAO Songlin

李思宇, 李晓彬, 赵鹏铎, 高松林. GFRP复合三明治板在高速弹体冲击下的弹道极限预测[J]. 高压物理学报, 2018, 32(1): 015101. doi: 10.11858/gywlxb.20170529
引用本文: 李思宇, 李晓彬, 赵鹏铎, 高松林. GFRP复合三明治板在高速弹体冲击下的弹道极限预测[J]. 高压物理学报, 2018, 32(1): 015101. doi: 10.11858/gywlxb.20170529
LI Siyu, LI Xiaobin, ZHAO Pengduo, GAO Songlin. Prediction of Ballistic Limit of Composite GFRP Sandwich Panels under Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015101. doi: 10.11858/gywlxb.20170529
Citation: LI Siyu, LI Xiaobin, ZHAO Pengduo, GAO Songlin. Prediction of Ballistic Limit of Composite GFRP Sandwich Panels under Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015101. doi: 10.11858/gywlxb.20170529

Prediction of Ballistic Limit of Composite GFRP Sandwich Panels under Hypervelocity Impact

doi: 10.11858/gywlxb.20170529
Funds: 

National Natural Science Foundation of China 11302259

More Information
    Author Bio:

    LI Siyu(1991—), male, master, major in structural safety and reliability.E-mail:lisiyufly@163.com

    Corresponding author: LI Xiaobin(1971—), male, doctor, professor, major in structural safety and reliability. E-mail:lxbmark@163.com
  • 摘要: 研究了玻璃纤维复合三明治板在圆柱形平头弹体打击下的预测弹道极限的理论预测方法。建立了玻璃纤维复合三明治板的三阶段侵彻模型,包括侵彻面板阶段、侵彻复合材料夹芯层阶段和侵彻内板阶段。基于高速弹体侵彻下靶板的局部变形假设建立了理论关系,将弹体侵彻复合材料夹心层时视为刚体处理,面板和背板的侵彻阶段考虑了弹体的墩粗效应和靶板的绝热剪切效应。基于能量平衡原理,推导了复合材料三明治板的弹道极限,并将理论计算结果与实验结果进行对比和分析,研究了不同侵彻速度、弹体质量和夹心层厚度对弹道极限的影响。结果表明,理论计算结果与实验结果具有较好的一致性。

     

  • Figure  1.  Schematic diagram of composite sandwich panels under impact of flat-nose cylindrical projectile

    Figure  2.  Three stages of perforation

    Figure  3.  Bai-Johnson thermal-plastic constitutive model

    Figure  4.  Penetration of the back skin

    Figure  5.  Experimental setup of the ballistic impact on sandwich panels

    Figure  6.  Plastic deformation of the front skin

    Figure  7.  Plastic deformation of GERP core

    Figure  8.  Plastic deformation of the back skin

    Figure  9.  Shape of projectile after perforation of back skin

    Figure  10.  Experimental data of sandwich composite panels with a 60 mm thick GFRP core under impact of flat-nosed cylindrical projectile

    Figure  11.  Ballistic limit changing with the GFRP core thickness under impact of a 40 g flat-nosed cylindrical projectile

    Figure  12.  Ballistic limit of composite GFRP sandwich panels with a 60 mm thick core changing with the mass of projectile

    Table  1.   Mechanical and geometrical properties of steel skins

    hf/mm hb/mm ρf/(kg·m-3) σu/MPa n γi
    6.2 10.6 7 850 779 0.586 1.4
    下载: 导出CSV

    Table  2.   Comparison of ballistic limit computed by theoretical model with experimental results

    Mass/g Core thickness/mm Exp. value/(m·s-1) Calc. value/(m·s-1) Error/%
    40 40 753.8 831.9 10.7
    30 60 1 422.9 1 402.9
    40 60 1 162.7 1 132.4 2.6
    50 60 974.1 958.1 1.6
    50 75 879.0 1 144.7
    下载: 导出CSV

    Table  3.   Energy absorption ratio of composite GFRP sandwich panels under impact of flat-nosed cylindrical projectile with ballistic limit velocity

    Mass/g Core thickness/mm (Efro/Eabs)/% (Ecor/Eabs)/% (Ebac/Eabs)/%
    40 40 2.9 90.7 6.4
    30 60 1.6 95.0 3.4
    40 60 1.4 95.7 2.9
    50 60 1.8 94.4 3.8
    50 75 1.2 96.1 2.7
    下载: 导出CSV
  • [1] JOHNSON W S, MASTERS J E, WILSON D W, et al.Comparison of the low and high velocity impact response of kevlar fiber-reinforced epoxy composites[J]. Journal of Composites Technology & Research, 1999, 21(4):224-229.
    [2] VAIDYA U K, ULVEN C, PILLAY S, et al.Impact damage of partially foam-filled co-injected honeycomb core sandwich composites[J]. Journal of Composite Materials, 2003, 37(7):611-626. doi: 10.1177/002199803029724
    [3] KEPLER J.Impact penetration of sandwich panels at different velocities-an experimental parameter study:part Ⅰ-parameters and results[J]. Journal of Sandwich Structures & Materials, 2004, 6(4):357-374. doi: 10.1177/1099636204038217
    [4] 曹海要, 战再吉.铜/金刚石复合材料电磁轨道烧蚀特性的实验研究[J].高压物理学报, 2016, 30(4):317-322. doi: 10.11858/gywlxb.2016.04.008

    CAO H Y, ZHAN Z J.Experimental study of Cu/diamond composite electromagnetic rail ablation characteristics[J]. Chinese Journal of High Pressure Physics, 2016, 30(4):317-322. doi: 10.11858/gywlxb.2016.04.008
    [5] 王志刚, 徐亮, 李绪海, 等.碳化硅-金刚石超硬复合材料的弹性性质[J].高压物理学报, 2015, 29(4):263-267. doi: 10.11858/gywlxb.2015.04.004

    WANG Z G, XU L, LI X H, et al.Elastic property of SiC-diamond composite under hydrostatic pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(4):263-267. doi: 10.11858/gywlxb.2015.04.004
    [6] LI G, JONES N.Development of rubberized syntactic foam[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(6):1483-1492. doi: 10.1016/j.compositesa.2007.01.009
    [7] JOVER N, SHAFIQ B, VAIDYA U.Ballistic impact analysis of balsa core sandwich composites[J]. Composites Part B:Engneering, 2014, 67:160-169. doi: 10.1016/j.compositesb.2014.07.002
    [8] NIA A A, RAZAVI S B, MAJZOOBI G H.Ballistic limit determination of aluminum honeycombs—experimental study[J]. Materials Science and Engineering A, 2008, 488(1/2):273-280. https://www.sciencedirect.com/science/article/pii/S0921509307018308
    [9] WEN H M.Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes[J]. Composite Structures, 2000, 49(3):321-329. doi: 10.1016/S0263-8223(00)00064-7
    [10] WEN H M.Penetration and perforation of thick FRP laminates[J]. Composites Science & Technology, 2001, 61(8):1163-1172. https://www.sciencedirect.com/science/article/pii/S0266353801000203
    [11] GU B.Analytical modeling for the ballistic perforation of planar plain-woven fabric target by projectile[J]. Composites Part B:Engineering, 2003, 34(4):361-371. doi: 10.1016/S1359-8368(02)00137-3
    [12] NAIK N K, DOSHI A V.Ballistic impact behaviour of thick composites:parametric studies[J]. Composite Structures, 2008, 82(3):447-464. doi: 10.1016/j.compstruct.2007.01.025
    [13] NAIK N K, SHRIRAO P, REDDY B C K.Ballistic impact behaviour of woven fabric composites:formulation[J]. International Journal of Impact Engineering, 2006, 32(9):1521-1552. doi: 10.1016/j.ijimpeng.2005.01.004
    [14] GAMA B A, GILLESPIE J W Jr.Punch shear based penetration model of ballistic impact of thick-section composites[J]. Composite Structures, 2008, 86(4):356-369. doi: 10.1016/j.compstruct.2007.11.001
    [15] CHAN S, FAWAZ Z, BEHDINAN K, et al.Ballistic limit prediction using a numerical model with progressive damage capability[J]. Composite Structures, 2007, 77(4):466-474. doi: 10.1016/j.compstruct.2005.08.022
    [16] FELI S, YAS M H, ASGARI M R.An analytical model for perforation of ceramic/multi-layered planar woven fabric targets by blunt projectiles[J]. Composite Structures, 2011, 93(2):548-556. doi: 10.1016/j.compstruct.2010.08.025
    [17] SILVA M A G, CISMASIU C, CHIOREAN C G.Numerical simulation of ballistic impact on composite laminates[J]. International Journal of Impact Engineering, 2005, 31(3):289-306. doi: 10.1016/j.ijimpeng.2004.01.011
    [18] GOLDSMITH W, WANG G T, LI K, et al.Perforation of cellular sandwich plates[J]. International Journal of Impact Engineering, 1997, 19(5/6):361-379. https://www.sciencedirect.com/science/article/pii/S0734743X97000031
    [19] SKVORTSOV V, KEPLER J, BOZHEVOLNAYA E.Energy partition for ballistic penetration of sandwich panels[J]. International Journal of Impact Engineering, 2003, 28(7):697-716. doi: 10.1016/S0734-743X(02)00153-7
    [20] ZHOU D W, STRONGE W J.Ballistic limit for oblique impact of thin sandwich panels and spaced plates[J]. International Journal of Impact Engineering, 2008, 35(11):1339-1354. doi: 10.1016/j.ijimpeng.2007.08.004
    [21] RYAN S, SCHAEFER F, DESTEFANIS R, et al.A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures[J]. Advances in Space Research, 2008, 41(7):1152-1166. doi: 10.1016/j.asr.2007.02.032
    [22] BUITRAGO B L, SANTIUSTE C, SANCHEZ-SAEZ S, et al.Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact[J]. Composite Structures, 2010, 92(9):2090-2096. doi: 10.1016/j.compstruct.2009.10.013
    [23] GARCIA-CASTILLO S K, BUITRAGO B L, BARBERO E.Behavior of sandwich structures and spaced plates subjected to high-velocity impacts[J]. Polymer Composites, 2011, 32(2):290-296. doi: 10.1002/pc.v32.2
    [24] FELI S, POUR M H N.An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact[J]. Composites Part B, 2012, 43(5):2439-2447. doi: 10.1016/j.compositesb.2011.11.028
    [25] BAI Y L, JOHNSON W.Plugging:physical understanding and energy absorption[J]. Materials Science & Technology, 2013, 9(1):182-190. https://www.researchgate.net/publication/272248744_Plugging_physical_understanding_and_energy_absorption
    [26] LANGSETH M, LARSEN P K.The behaviour of square steel plates subjected to a circular blunt ended load[J]. International Journal of Impact Engineering, 1992, 12(4):617-638. doi: 10.1016/0734-743X(92)90271-T
    [27] BORVIK T, LANGSETH M, HOPPERSTAD O S, et al.Ballistic penetration of steel plates[J]. International Journal of Impact Engineering, 1999, 22(9/10):855-886. https://www.sciencedirect.com/science/article/pii/S0734743X99000111
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  6941
  • HTML全文浏览量:  2779
  • PDF下载量:  139
出版历程
  • 收稿日期:  2017-01-12
  • 修回日期:  2017-03-27

目录

    /

    返回文章
    返回