双层楔形装药ERA干扰聚能射流的数值模拟

高永宏 张明 刘迎彬 周杰 石军磊 孙淼 孙建军 万清华

高永宏, 张明, 刘迎彬, 周杰, 石军磊, 孙淼, 孙建军, 万清华. 双层楔形装药ERA干扰聚能射流的数值模拟[J]. 高压物理学报, 2018, 32(6): 065108. doi: 10.11858/gywlxb.20170525
引用本文: 高永宏, 张明, 刘迎彬, 周杰, 石军磊, 孙淼, 孙建军, 万清华. 双层楔形装药ERA干扰聚能射流的数值模拟[J]. 高压物理学报, 2018, 32(6): 065108. doi: 10.11858/gywlxb.20170525
GAO Yonghong, ZHANG Ming, LIU Yingbing, ZHOU Jie, SHI Junlei, SUN Miao, SUN Jiangjun, WAN Qinghua. Numerical Simulation of the Interference of Double-layer Wedge-Charge ERA on Shaped Jet[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065108. doi: 10.11858/gywlxb.20170525
Citation: GAO Yonghong, ZHANG Ming, LIU Yingbing, ZHOU Jie, SHI Junlei, SUN Miao, SUN Jiangjun, WAN Qinghua. Numerical Simulation of the Interference of Double-layer Wedge-Charge ERA on Shaped Jet[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065108. doi: 10.11858/gywlxb.20170525

双层楔形装药ERA干扰聚能射流的数值模拟

doi: 10.11858/gywlxb.20170525
基金项目: 

国家自然科学基金 11572292

详细信息
    作者简介:

    高永宏(1978-), 女, 博士, 副教授, 主要从事聚能装药的聚能效应及应用研究. E-mail:gyh54gyh@163.com

  • 中图分类号: O385

Numerical Simulation of the Interference of Double-layer Wedge-Charge ERA on Shaped Jet

  • 摘要: 在现有双层平板装药结构爆炸反应装甲(ERA)的基础上,设计了4种双层楔形装药ERA,利用模拟仿真软件LS-DYNA 3D对其干扰射流的能力进行评估,分别对侵彻过程中平板运动状态、射流头部的速度变化及偏转程度、杵体断裂情况、侵彻靶板的深度及分布等进行分析,以选出最优方案。对比发现:方案3聚能射流速度下降最快,侵彻深度最浅且分布均匀,拥有最好的防护性能;方案4次之;方案1较方案4差些;方案2最差。且方案3和方案4中出现类似于爆炸焊接原理形成的复合飞板层。合理使用楔形装药可以使射流切割更加均匀,增强坦克的防护性能,为以后在装药结构上的探索提供了理论依据。

     

  • 图  设计模型(左)及有限元模型(右)示意

    Figure  1.  Schematic of model (Left) and its finite element model (Right)

    图  各方案ERA结构尺寸示意(mm)

    Figure  2.  ERA structure size diagram for each scheme (mm)

    图  各方案不同时刻飞板和射流运行形态

    Figure  3.  Pattern diagrams of flying-plate of each scheme at different times

    图  射流接触ERA临界时刻形态

    Figure  4.  Pattern diagram of the critical moment of jet contacting ERA

    图  各方案射流头部断裂临界时刻形态图

    Figure  5.  Critical moment patterns of jet head fracture in each scheme

    图  各方案楔形装药ERA对射流的干扰

    Figure  6.  Interference of wedge-charge ERA on jet in each scheme

    图  300 μs时刻靶板侵彻深度和分布

    Figure  7.  Penetration depth and distribution of 300 μs target

    表  1  双层ERA设定数据

    Table  1.   Data setting of double-layer ERA

    Scheme No. Charge type 1st ERA 2nd ERA
    a/mm b/mm a/mm b/mm
    1 Wedge-shaped 5 3 5 3
    2 Wedge-shaped 3 5 3 5
    3 Wedge-shaped 5 3 3 5
    4 Wedge-shaped 3 5 5 3
    5 Sandwich 4 4 4 4
    下载: 导出CSV

    表  2  铜、钢材料模型及状态方程参数

    Table  2.   Parameters of material model and equation of state for copper and steel

    Material ρ/(g·cm-3) G/GPa AJ-C/GPa BJ-C/GPa S1 S2 C/(m·s-1) V0
    Copper 8.96 46 0.09 0.92 1.489 0 3 940 1
    Steel 7.785 77.5 0.175 0.376 1.49 0 4 570 1
    下载: 导出CSV

    表  3  B炸药材料模型及状态方程参数

    Table  3.   Parameters of material model and equation of state for explosive B

    ρ/(g·cm-3) pCJ/GPa D/(m·s-1) AJWL BJWL RJWL, 1 RJWL, 2 E0
    1.717 29.5 7 980 524.2 7.678 4.2 1.1 0.085
    下载: 导出CSV

    表  4  夹层炸药PBX9502材料模型及状态方程参数

    Table  4.   Parameters of material model and equation of state for explosive PBX9502

    ρ/(g·cm-3) G/GPa σY/GPa A/GPa B/GPa R1
    1.712 3.54 0.2 524.2 7.678 778.1
    R2 R3 R5 R6 cp/(J·kg-1·K-1) cR/(J·kg-1·K-1)
    -0.050 31 2.223×10-5 11.3 1.13 10-3 2.487×10-3
    GROW2 AR2 ES1 ES2 EN
    300 1 0.222 0.333 2.0
    下载: 导出CSV
  • [1] 叶春辉.爆炸反应装甲的爆炸过程对射流的干扰分析[J].机械管理开发, 2012(6):27-28. doi: 10.3969/j.issn.1003-773X.2012.06.014

    YE C H.Analysis of the interference of explosive reaction armor on the jet[J].Development of mechanical management, 2012(6):27-28. doi: 10.3969/j.issn.1003-773X.2012.06.014
    [2] 刘宏伟.爆炸反应装甲飞板变形及干扰射流模型[D].南京: 南京理工大学, 2008: 22-23.

    LIU H W.Model of explosive reaction armored flyer plate deformation and jamming jet model[D].Nanjing: Nanjing University of Science and Technology, 2008: 22-23.
    [3] 董旭意.反应装甲对射流的干扰机理研究[D].南京: 南京理工大学, 2008: 30-31.

    DONG X Y.Study on the interference mechanism of reactive armor to jet[D].Nanjing: Nanjing University of Science and Technology, 2008: 30-31.
    [4] 周杰, 王凤英, 原诗瑶, 等.楔形装药对射流干扰的数值模拟[J].高压物理学报, 2018, 32(2):025106. http://www.gywlxb.cn/CN/abstract/abstract2064.shtml

    ZHOU J, WANG F Y, YUAN S Y, et al.Numerical simulation of interference effect of wedge-shaped charge on jet[J].Chinese Journal of High Pressure Physics, 2018, 32(2):025106. http://www.gywlxb.cn/CN/abstract/abstract2064.shtml
    [5] PAIK S H, KIM S J, YOO Y H, et al.Protection performance of dual flying oblique plates against a yawed long-rod penetrator[J].International Journal of Impact Engineering, 2007, 34(8):1413-1422. doi: 10.1016/j.ijimpeng.2006.06.006
    [6] MAYSELESS M.Effectiveness of explosive reactive armor[J].Journal of Applied Mechanics, 2011, 78(5):051006. doi: 10.1115/1.4004398
    [7] 吴鹏, 李如江, 雷伟, 等.运动状态下聚能战斗部侵彻披挂反应装甲靶板的数值模拟[J].高压物理学报, 2018, 32(2):025107. http://www.gywlxb.cn/CN/abstract/abstract2065.shtml

    WU P, LI R J, LEI W, et al.Numerical simulation of shaped warhead penetrating the target with reactive armor in motion state[J].Chinese Journal of High Pressure Physics, 2018, 32(2):025107. http://www.gywlxb.cn/CN/abstract/abstract2065.shtml
    [8] 黄正祥.聚能装药理论与实践[M].北京:北京理工大学出版社, 2014:376-387.

    HUANG Z X.Theory and practice of shaped charge[M].Beijing:Beijing Institute of Technology Press, 2014:376-387.
    [9] 武海军, 陈利, 王江波, 等.反应装甲对射流干扰的数值模拟研究[J].北京理工大学学报, 2006, 26(7):565-568, 605. doi: 10.3969/j.issn.1001-0645.2006.07.001

    WU H J, CHEN L, WANG J B, et al.Numerical simulation of jet interference by reactive armor[J].Journal of Beijing Institute of Technology, 2006, 26(7):565-568, 605. doi: 10.3969/j.issn.1001-0645.2006.07.001
    [10] 柳魁, 弯天琪.爆炸反应装甲对射流的干扰分析[J].黑龙江科技信息, 2015(9):33. doi: 10.3969/j.issn.1673-1328.2015.09.032

    LIU K, WAN T Q.Analysis of the interference of explosive reaction armor to the jet[J].Heilongjiang Science and Technology Information, 2015(9):33. doi: 10.3969/j.issn.1673-1328.2015.09.032
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  7156
  • HTML全文浏览量:  2760
  • PDF下载量:  20
出版历程
  • 收稿日期:  2018-03-12
  • 修回日期:  2018-04-25

目录

    /

    返回文章
    返回