Numerical Simulation of the Interference of Double-layer Wedge-Charge ERA on Shaped Jet
-
摘要: 在现有双层平板装药结构爆炸反应装甲(ERA)的基础上,设计了4种双层楔形装药ERA,利用模拟仿真软件LS-DYNA 3D对其干扰射流的能力进行评估,分别对侵彻过程中平板运动状态、射流头部的速度变化及偏转程度、杵体断裂情况、侵彻靶板的深度及分布等进行分析,以选出最优方案。对比发现:方案3聚能射流速度下降最快,侵彻深度最浅且分布均匀,拥有最好的防护性能;方案4次之;方案1较方案4差些;方案2最差。且方案3和方案4中出现类似于爆炸焊接原理形成的复合飞板层。合理使用楔形装药可以使射流切割更加均匀,增强坦克的防护性能,为以后在装药结构上的探索提供了理论依据。Abstract: Based on the existing double-layer flat-charge explosive reactive armor (ERA), we designed 4 different structures of double-layered wedge-charge ERA, and employed the LSDYNA-3D software to evaluate their ability of interfering with the jet.We analyzed the motion state of flying-plates, the velocity and deflection of the jet head, the slug fracture, the depth of penetration, and the jet distribution in the target to select the optimal solution.The comparison shows that Scheme 3 has the fastest jet velocity reduction rate with the smallest and evenly distributed penetration depth.It can be seen that Scheme 3 has the best protection performance, followed by Scheme 4, Scheme 1 and Scheme 2 in sequence.In Scheme 3 and Scheme 4, a composite flying-plate layer similar to the explosion welding principle has been observed.Through the simulation study of the double-layer wedge-charge ERA, it is found that the reasonable use of the wedge-shaped charge can make the jet cutting more uniformly and enhance the protective performance of tanks, which provides a theoretical basis for future research on the charge structure.
-
Key words:
- wedge-shaped charge /
- explosive reactive armor /
- shaped charge /
- LS-DYNA
-
表 1 双层ERA设定数据
Table 1. Data setting of double-layer ERA
Scheme No. Charge type 1st ERA 2nd ERA a/mm b/mm a/mm b/mm 1 Wedge-shaped 5 3 5 3 2 Wedge-shaped 3 5 3 5 3 Wedge-shaped 5 3 3 5 4 Wedge-shaped 3 5 5 3 5 Sandwich 4 4 4 4 表 2 铜、钢材料模型及状态方程参数
Table 2. Parameters of material model and equation of state for copper and steel
Material ρ/(g·cm-3) G/GPa AJ-C/GPa BJ-C/GPa S1 S2 C/(m·s-1) V0 Copper 8.96 46 0.09 0.92 1.489 0 3 940 1 Steel 7.785 77.5 0.175 0.376 1.49 0 4 570 1 表 3 B炸药材料模型及状态方程参数
Table 3. Parameters of material model and equation of state for explosive B
ρ/(g·cm-3) pCJ/GPa D/(m·s-1) AJWL BJWL RJWL, 1 RJWL, 2 E0 1.717 29.5 7 980 524.2 7.678 4.2 1.1 0.085 表 4 夹层炸药PBX9502材料模型及状态方程参数
Table 4. Parameters of material model and equation of state for explosive PBX9502
ρ/(g·cm-3) G/GPa σY/GPa A/GPa B/GPa R1 1.712 3.54 0.2 524.2 7.678 778.1 R2 R3 R5 R6 cp/(J·kg-1·K-1) cR/(J·kg-1·K-1) -0.050 31 2.223×10-5 11.3 1.13 10-3 2.487×10-3 GROW2 AR2 ES1 ES2 EN 300 1 0.222 0.333 2.0 -
[1] 叶春辉.爆炸反应装甲的爆炸过程对射流的干扰分析[J].机械管理开发, 2012(6):27-28. doi: 10.3969/j.issn.1003-773X.2012.06.014YE C H.Analysis of the interference of explosive reaction armor on the jet[J].Development of mechanical management, 2012(6):27-28. doi: 10.3969/j.issn.1003-773X.2012.06.014 [2] 刘宏伟.爆炸反应装甲飞板变形及干扰射流模型[D].南京: 南京理工大学, 2008: 22-23.LIU H W.Model of explosive reaction armored flyer plate deformation and jamming jet model[D].Nanjing: Nanjing University of Science and Technology, 2008: 22-23. [3] 董旭意.反应装甲对射流的干扰机理研究[D].南京: 南京理工大学, 2008: 30-31.DONG X Y.Study on the interference mechanism of reactive armor to jet[D].Nanjing: Nanjing University of Science and Technology, 2008: 30-31. [4] 周杰, 王凤英, 原诗瑶, 等.楔形装药对射流干扰的数值模拟[J].高压物理学报, 2018, 32(2):025106. http://www.gywlxb.cn/CN/abstract/abstract2064.shtmlZHOU J, WANG F Y, YUAN S Y, et al.Numerical simulation of interference effect of wedge-shaped charge on jet[J].Chinese Journal of High Pressure Physics, 2018, 32(2):025106. http://www.gywlxb.cn/CN/abstract/abstract2064.shtml [5] PAIK S H, KIM S J, YOO Y H, et al.Protection performance of dual flying oblique plates against a yawed long-rod penetrator[J].International Journal of Impact Engineering, 2007, 34(8):1413-1422. doi: 10.1016/j.ijimpeng.2006.06.006 [6] MAYSELESS M.Effectiveness of explosive reactive armor[J].Journal of Applied Mechanics, 2011, 78(5):051006. doi: 10.1115/1.4004398 [7] 吴鹏, 李如江, 雷伟, 等.运动状态下聚能战斗部侵彻披挂反应装甲靶板的数值模拟[J].高压物理学报, 2018, 32(2):025107. http://www.gywlxb.cn/CN/abstract/abstract2065.shtmlWU P, LI R J, LEI W, et al.Numerical simulation of shaped warhead penetrating the target with reactive armor in motion state[J].Chinese Journal of High Pressure Physics, 2018, 32(2):025107. http://www.gywlxb.cn/CN/abstract/abstract2065.shtml [8] 黄正祥.聚能装药理论与实践[M].北京:北京理工大学出版社, 2014:376-387.HUANG Z X.Theory and practice of shaped charge[M].Beijing:Beijing Institute of Technology Press, 2014:376-387. [9] 武海军, 陈利, 王江波, 等.反应装甲对射流干扰的数值模拟研究[J].北京理工大学学报, 2006, 26(7):565-568, 605. doi: 10.3969/j.issn.1001-0645.2006.07.001WU H J, CHEN L, WANG J B, et al.Numerical simulation of jet interference by reactive armor[J].Journal of Beijing Institute of Technology, 2006, 26(7):565-568, 605. doi: 10.3969/j.issn.1001-0645.2006.07.001 [10] 柳魁, 弯天琪.爆炸反应装甲对射流的干扰分析[J].黑龙江科技信息, 2015(9):33. doi: 10.3969/j.issn.1673-1328.2015.09.032LIU K, WAN T Q.Analysis of the interference of explosive reaction armor to the jet[J].Heilongjiang Science and Technology Information, 2015(9):33. doi: 10.3969/j.issn.1673-1328.2015.09.032