一种超高温动态力学行为测试及原位图像获取方法

张超 索涛 谭伟力 张欣玥 汪存显 李玉龙

张超, 索涛, 谭伟力, 张欣玥, 汪存显, 李玉龙. 一种超高温动态力学行为测试及原位图像获取方法[J]. 高压物理学报, 2018, 32(1): 013202. doi: 10.11858/gywlxb.20170522
引用本文: 张超, 索涛, 谭伟力, 张欣玥, 汪存显, 李玉龙. 一种超高温动态力学行为测试及原位图像获取方法[J]. 高压物理学报, 2018, 32(1): 013202. doi: 10.11858/gywlxb.20170522
ZHANG Chao, SUO Tao, TAN Weili, ZHANG Xinyue, WANG Cunxian, LI Yulong. A Method for Testing Dynamic Mechanical Behavior of Materials at Ultra-High Temperature and in-Situ Observation[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 013202. doi: 10.11858/gywlxb.20170522
Citation: ZHANG Chao, SUO Tao, TAN Weili, ZHANG Xinyue, WANG Cunxian, LI Yulong. A Method for Testing Dynamic Mechanical Behavior of Materials at Ultra-High Temperature and in-Situ Observation[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 013202. doi: 10.11858/gywlxb.20170522

一种超高温动态力学行为测试及原位图像获取方法

doi: 10.11858/gywlxb.20170522
基金项目: 

国家自然科学基金 11522220

国家自然科学基金 11272267

国家自然科学基金 11527803

详细信息
    作者简介:

    张超(1991-), 男, 博士研究生, 主要从事高温动态测量研究. E-mail: zhcdao@outlook.com

    通讯作者:

    索涛(1979-), 男, 博士, 教授, 主要从事材料及结构的动态力学行为研究. E-mail: suotao@nwpu.edu.cn

  • 中图分类号: O347;O521.3

A Method for Testing Dynamic Mechanical Behavior of Materials at Ultra-High Temperature and in-Situ Observation

  • 摘要: 提出了一种新的超高温(1 600 ℃)动态力学性能测试及原位图像获取方法:在原有分离式Hopkinson压杆的基础上,利用加热源为MoSi2的超高温炉实现超高温环境,采用两个活塞组成双同步系统,利用高速摄像机记录动态变形过程。为了验证所提方法的可行性,以TC4钛合金和SiC陶瓷为研究对象,进行超高温动态力学性能测试,其中:在TC4钛合金实验中,应变率为2 000 s-1,温度范围为20~1 400 ℃,测得其流动应力从1.6 GPa降到150 MPa;在SiC实验中,应变率为250 s-1,温度范围为20~1 200 ℃,测得其压缩强度从250 MPa降到220 MPa。根据高速摄像机记录的试样动态变形过程,分析试样的破坏模式,结果表明:在高温空气环境下,TC4钛合金试样表面有氧化层裂开现象,而在氩气环境下则没有;室温下,SiC试样初始裂纹产生时的应力为压缩强度的80%,而在1 200 ℃下为压缩强度的99%。

     

  • 图  带有超高速摄像机的超高温双同步SHPB装置示意图

    Figure  1.  Schematic illustration of the ultra-high temperature SHPB with a double-synchronically assembled heating system and high speed camera

    图  高速摄像机布局(插图为高温炉内部图像)

    Figure  2.  High speed camera (The inset shows the internal of the furnace.)

    图  不同温度下波长与热辐射能量的关系曲线

    Figure  3.  Wavelength vs.thermal radiation energy at different temperatures

    图  TC4在应变率为2 000 s-1、温度范围为20~1 400 ℃条件下的应力-应变曲线

    Figure  4.  Stress-strain curves of TC4 at strain rate of 2 000 s-1 and temperature range of 20 ℃ to 1 400 ℃

    图  TC4在应变率为2 000 s-1、温度为1 100 ℃、不同气体环境下的应力-应变曲线及形貌

    Figure  5.  Stress-strain curves and morphologies of TC4 at 2 000 s-1 and 1 100 ℃ in different gas environments

    图  高温散斑

    Figure  6.  High temperature speckle

    图  SiC在应变率为250 s-1,温度为20、800和1 200 ℃时的应力-应变曲线及形貌

    Figure  7.  Stress-strain curves and morphologies of SiC at strain rate of 250 s-1 and temperature of 20, 800 and 1 100 ℃

  • [1] 魏延鹏, 虞钢, 段祝平.高温高应变率下异种不锈钢激光焊接件的力学性能[J].爆炸与冲击, 2011, 31(5):504-509. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201105009

    WEI Y P, YU G, DUAN Z P.Mechanical properties of laser-welded dissimilar stainless steels structure at elevated temperature and high strain rates[J].Explosion and Shock Waves, 2011, 31(5):504-509. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201105009
    [2] 宫旭辉, 王宇, 夏源明, 等.TC21钛合金的高温动态拉伸力学行为[J].中国有色金属学报, 2010, 20(4):647-654. http://www.ysxbcn.com/down/down_41777.html

    GONG X H, WANG Y, XIA Y M, et al.Dynamic tensile behavior of TC21 titanium alloys at elevated temperatures[J].The Chinese Journal of Nonferrous Metals, 2010, 20(4):647-654. http://www.ysxbcn.com/down/down_41777.html
    [3] 李玉龙, 郭伟国, 徐绯, 等.Hopkinson压杆技术的推广应用[J].爆炸与冲击, 2006, 26(5):385-394. doi: 10.3321/j.issn:1001-1455.2006.05.001

    LI Y L, GUO W G, XU F, et al.The extended application of Hopkinson bar technique[J].Explosion and Shock Waves, 2006, 26(5):385-394. doi: 10.3321/j.issn:1001-1455.2006.05.001
    [4] CHEN W N, SONG B.Split Hopkinson (Kolsky) bar:design, testing and applications[M].New York:Springer, 2011.
    [5] 陈荣, 卢芳云, 林玉亮, 等.分离式Hopkinson压杆实验技术研究进展[J].力学进展, 2009, 39(5):576-587. doi: 10.6052/1000-0992-2009-5-J2008-096

    CHEN R, LU F Y, LIN Y L, et al.A critical review of split Hopkinson pressure bar technique[J].Advances in Mechanics, 2009, 39(5):576-587. doi: 10.6052/1000-0992-2009-5-J2008-096
    [6] CHIDDISTER J L, MALVERN L E.Compression-impact testing of aluminum at elevated temperatures[J].Experimental Mechanics, 1963, 3(4):81-90. doi: 10.1007/BF02325890
    [7] LINDHOLM U S, YEAKLEY L M.High strain-rate testing:tension and compression[J].Experimental Mechanics, 1968, 8(1):1-9. doi: 10.1007/BF02326244
    [8] LATELLA B A, HUMPHRIES S R.Young's modulus of a 2.25Cr-1Mo steel at elevated temperature[J].Scripta Materialia, 2004, 51(7):635-639. doi: 10.1016/j.scriptamat.2004.06.028
    [9] LANKFORD J.Temperature-strain rate dependance of compressive strength and damage mechanisms in aluminium oxide[J].Journal of Materials Science, 1981, 16(6):1567-1578. doi: 10.1007/BF02396874
    [10] GILAT A, WU X.Elevated temperature testing with the torsional split Hopkinson bar[J].Journal of Materials Science, 1994, 34(2):166-170. doi: 10.1007/BF02325713
    [11] NEMAT-NASSER S, ISAACS J B, STARRETT J E.Hopkinson techniques for dynamic recovery experiments[J].Proceedings of the Royal Society A, 1991, 435(1894):371-391. doi: 10.1098/rspa.1991.0150
    [12] NEMAT-NASSER S, ISAACS J B.Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys[J].Acta Materialia, 1997, 45(3):907-919. doi: 10.1016/S1359-6454(96)00243-1
    [13] SEO S, MIN O, YANG H.Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J].International Journal of Impact Engineering, 2005, 31(6):735-754. doi: 10.1016/j.ijimpeng.2004.04.010
    [14] APOSTOL M, VUORISTO T, KUOKKALA V T.High temperature high strain rate testing with a compressive SHPB[J].Journal de Physique Ⅳ (Proceedings), 2003, 110:459-464. doi: 10.1051/jp4:20020736
    [15] LI Y, GUO Y, HU H, et al.A critical assessment of high-temperature dynamic mechanical testing of metals[J].International Journal of Impact Engineering, 2009, 36(2):177-184. doi: 10.1016/j.ijimpeng.2008.05.004
    [16] 李玉龙, 索涛, 郭伟国, 等.确定材料在高温高应变率下动态性能的Hopkinson杆系统[J].爆炸与冲击, 2005, 25(6):487-492. doi: 10.11883/1001-1455(2005)06-0487-06

    LI Y L, SUO T, GUO W G, et al.Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J].Explosion and Shock Waves, 2005, 25(6):487-492. doi: 10.11883/1001-1455(2005)06-0487-06
    [17] KAJBERG J, SUNDIN K G.Material characterisation using high-temperature split Hopkinson pressure bar[J].Journal of Materials Processing Technology, 2013, 213(4):522-531. doi: 10.1016/j.jmatprotec.2012.11.008
    [18] ZHANG C, SUO T, TAN W, et al.An experimental method for determination of dynamic mechanical behavior of materials at high temperatures[J].International Journal of Impact Engineering, 2017, 102:27-35. doi: 10.1016/j.ijimpeng.2016.12.002
    [19] SONG B, ANTOUN B R, NIE X, et al.High-rate characterization of 304L stainless steel at elevated temperatures for recrystallization investigation[J].Experimental Mechanics, 2009, 50(4):553-560. doi: 10.1007/s11340-009-9253-6
    [20] MATES S P, RHORER R, WHITENTON E, et al.A pulse-heated Kolsky bar technique for measuring the flow stress of metals at high loading and heating rates[J].Experimental Mechanics, 2008, 48(6):799-807. doi: 10.1007/s11340-008-9137-1
  • 加载中
图(7)
计量
  • 文章访问数:  7748
  • HTML全文浏览量:  3463
  • PDF下载量:  323
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-05-28

目录

    /

    返回文章
    返回