弹丸高速斜侵彻入水流场显示的初步研究

周杰 徐胜利 彭杰

周杰, 徐胜利, 彭杰. 弹丸高速斜侵彻入水流场显示的初步研究[J]. 高压物理学报, 2018, 32(1): 015102. doi: 10.11858/gywlxb.20170509
引用本文: 周杰, 徐胜利, 彭杰. 弹丸高速斜侵彻入水流场显示的初步研究[J]. 高压物理学报, 2018, 32(1): 015102. doi: 10.11858/gywlxb.20170509
ZHOU Jie, XU Shengli, PENG Jie. Water Entry Flow-Field Visualization of the ObliquePenetration of a High-Speed Projectile[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015102. doi: 10.11858/gywlxb.20170509
Citation: ZHOU Jie, XU Shengli, PENG Jie. Water Entry Flow-Field Visualization of the ObliquePenetration of a High-Speed Projectile[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015102. doi: 10.11858/gywlxb.20170509

弹丸高速斜侵彻入水流场显示的初步研究

doi: 10.11858/gywlxb.20170509
基金项目: 

中国博士后科学基金 2015M581081

中国运载火箭技术研究院基金 CALT201601

清华大学自主课题 20161080102

详细信息
    作者简介:

    周杰(1986—), 男,博士,主要从事超声速弹丸入水现象研究.E-mail:Beijihu1986@163.com

    通讯作者:

    徐胜利(1965—), 男,博士,教授,主要从事水下爆炸研究.E-mail:slxu@mail.tsinghua.edu.cn

  • 中图分类号: O353.4

Water Entry Flow-Field Visualization of the ObliquePenetration of a High-Speed Projectile

  • 摘要: 为认识弹丸高速斜侵彻入水的气/水界面变形破碎、入水空泡和水中冲击波传播,利用可变发射角立式二级轻气炮发射高速弹丸,结合高速激光阴影和纹影流场显示,给出了高速弹丸斜侵彻入水流场的演化图像。结果表明:当弹丸速度在350 m/s附近时,弹丸尾部气流会越过弹丸头部产生冲击波,因为时间短且水惯性大,冲击波在气/水界面反射但不会影响弹丸姿态和气/水界面。弹丸斜侵彻在水中产生冲击波系,气/水界面发生形变和破碎(“碎片云”),水中产生冲击波系和空化气泡区,难以识别气泡和“碎片云”的边界,不同头部构型弹丸会影响气泡和“碎片云”体积大小以及水下弹道稳定性。弹丸速度为1.8 km/s时,碎片云体积大于水下空泡体积,但流场结构和350 m/s情形相似。采用立式二级轻气炮和流场显示系统,为研究高速弹丸斜侵彻入水现象提供了新的途径。

     

  • 图  立式二级轻气炮结构(1.高压储气罐; 2.气动球阀; 3.平衡活塞; 4.重活塞; 5.充气腔; 6.压缩管; 7.集气腔; 8.液压阻尼缸; 9.弹丸; 10.发射管; 11.弹托捕捉器; 12.实验舱)

    Figure  1.  Schematic of vertical second-stage gas gun (1.High pressure gasholder; 2.Pneumatic ball valve; 3.Balance piston; 4.Heavy piston; 5.Inflation chamber; 6.Compression tube; 7.Gas-collecting chamber; 8.Hydraulic damping cylinder; 9.Projectile; 10.Launching tube; 11.Sabot catcher; 12.Chamber)

    图  弹托捕捉器(1.BOPP膜片; 2.泄气口; 3.弹丸; 4.弹托; 5.泄气舱; 6.泄气口; 7.发射管)

    Figure  2.  Sabot catcher (1.BOPP film; 2.Gas outlet; 3.Projectile; 4.Sabot; 5.Venting chamber; 6.Gas outlet; 7.Launching tube)

    图  激光光源阴影光路(1.激光; 2.匀化器; 3.扩束镜; 4.凹球反射镜Ⅰ; 5, 6.观察窗; 7.凹球反射镜Ⅱ; 8.高速CCD相机; 9.弹托捕捉器; 10.发射管)

    Figure  3.  Schematic of laser shadowgraph system (1.Laser; 2.Homogenizer; 3.Beam expander; 4.Concave mirror Ⅰ; 5, 6.Observation window; 7.Concave mirror Ⅱ; 8.High-speedCCD camera; 9.Sabot catcher; 10.Launching tube)

    图  3种弹丸结构

    Figure  4.  Schematic of 3 kinds of projectiles

    图  弹丸入水前流场高速阴影照片

    Figure  5.  High-speed shadowgraphs of flow-field before projectile water entry

    图  弹丸入水后流场阴影照片

    Figure  6.  High-speed shadowgraphs of flow-field after projectile water entry

    图  弹丸入水前、后的纹影照片

    Figure  7.  Schlieren photographs before and after projectile water entry

    表  1  实验工况和弹丸参数

    Table  1.   Experimental conditions and projectile parameters

    Exp. No. Projectile type Mass/g v1/(m·s-1) v2/(m·s-1) η/%
    Case A Cone-cylindrical,60° 53.4 350.5 331.6 5.4
    Case B Cone-cylindrical,90° 52.8 361.9 342.3 5.3
    Case C Truncated cone-cylinder 52.6 356.4 329.9 7.4
    下载: 导出CSV
  • [1] SCOLAN Y M, KOROBKIN A A.Three-dimensional theory of water impact.Part 1.inverse Wagner problem[J]. Journal of Fluid Mechanics, 2001, 440:293-326.
    [2] KOROBKIN A A, SCOLAN Y M.Three-dimensional theory of water impact.Part 2.linearized Wagner problem[J]. Journal of Fluid Mechanics, 2006, 549:343-373. doi: 10.1017/S0022112005008049
    [3] HOWISON S D, OCKENDON J R, OLIVER J M.Deep-and shallow-water slamming at small and zero deadrise angles[J]. Journal of Engineering Mathematics, 2002, 42(3/4):373-388. doi: 10.1023/A:1016177401868
    [4] HOWISON S D, OCKENDON J R, WILSON S K.Incompressible water-entry problems at small deadrise angles[J]. Journal of Fluid Mechanics, 1991, 222:215-230. doi: 10.1017/S0022112091001076
    [5] CHARTERS A C.The aerodynamic performance of small spheres from subsonic to high supersonic velocities[J]. Journal of the Aeronautical Sciences, 1945, 12(4):468-476. doi: 10.2514/8.11287
    [6] MAY A, HOOVER W R. A study of the water-entry cavity: AD 611406[R]. 1963.
    [7] MAY A. The cavity after vertical water entry: AD 679905[R]. 1968.
    [8] CUI S, CHEONG H K, HAO H.Experimental study of dynamic post-buckling characteristics of columns under fluid-solid slamming[J]. Engineering Structures, 2000, 22(6):647-656. doi: 10.1016/S0141-0296(98)00117-5
    [9] HAO H, CHEONG H K, CUI S.Analysis of imperfect column buckling under intermediate velocity impact[J]. International Journal of Solids and Structures, 2000, 37(38):5297-5313. doi: 10.1016/S0020-7683(99)00212-7
    [10] SHI H H, TAKAMI T.Hydrodynamic behavior of an underwater moving body after water entry[J]. Acta Mechanica Sinica, 2001, 17(1):35-44. doi: 10.1007/BF02487768
    [11] TRUSCOTT T T, TECHET A H.A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres[J]. Physics of Fluids, 2009, 21(12):1-4. http://www.academia.edu/6324012/A_spin_on_cavity_formation_during_water_entry_of_hydrophobic_and_hydrophilic_spheres
    [12] TRUSCOTT T T. Cvaity dynamics of water entry for spheres and ballistic projectiles[D]. Cambridge: Massachusetts Institute of Technology, 2009.
    [13] GRUMSTRUP T, KELLER B J, BELMONTE A.Cavity ripples observed during the impact of solid objects into liquid[J]. Physical Review Letters, 2007, 99(11):1-41.
    [14] 张伟, 郭子涛, 肖新科, 等.弹体高速入水特性实验研究[J].爆炸与冲击, 2011, 31(6):579-584. http://www.cqvip.com/QK/94778X/201106/40751656.html

    ZHANG W, GUO Z T, XIAO X K, et al.Experimental investigations on behaviors of projectile high-speed water entry[J]. Explosion and Shock Waves, 2011, 31(6):579-584. http://www.cqvip.com/QK/94778X/201106/40751656.html
    [15] GUO Z T, ZHANG W, XIAO X K, et al.An investigation into horizontal water entry behaviors of projectiles with different nose shapes[J]. International Journal of Impact Engineering, 2012, 49(2):43-60. https://www.sciencedirect.com/science/article/pii/S0734743X12000802
    [16] YAO E R, WANG H R, PAN L, et al.Vertical water-entry of bullet-shaped projectiles[J]. Journal of Applied Mathematics and Physics, 2014, 2:323-334. doi: 10.4236/jamp.2014.26039
    [17] TRUSCOTT T T, EPPS B P, BELDEN J.Water entry of projectiles[J]. Annual Review of Fluid Mechanics, 2014, 46:355-378. doi: 10.1146/annurev-fluid-011212-140753
    [18] 黄彪, 王国玉, 权晓波, 等.绕平头回转体非定常空化流体动力特性研究[J].实验流体力学, 2011, 25(2):22-28. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ltlxsyycl201102005

    HUANG B, WANG G Y, QUAN X B, et al.Study on the unsteady cavitating flow dynamic characteristics around a O-caliber ogive revolution body[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(2):22-28. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ltlxsyycl201102005
    [19] 罗小鹏. 高速弹丸斜侵彻水现象的初步实验研究[D]. 合肥: 中国科学技术大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2354346

    LUO X P. Experimental studies on inclined impacting water of a hypervelocity projectile[D]. Hefei: University of Science and Technology of China, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2354346
    [20] 左金东. 高超声速弹丸和水斜侵彻的初步实验研究[D]. 合肥: 中国科学技术大学, 2008.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  7372
  • HTML全文浏览量:  3025
  • PDF下载量:  229
出版历程
  • 收稿日期:  2017-01-11
  • 修回日期:  2017-04-06

目录

    /

    返回文章
    返回