密度非均匀流场中冲击加载双模态界面失稳现象的数值模拟

肖佳欣 柏劲松 王涛

肖佳欣, 柏劲松, 王涛. 密度非均匀流场中冲击加载双模态界面失稳现象的数值模拟[J]. 高压物理学报, 2018, 32(1): 012301. doi: 10.11858/gywlxb.20170501
引用本文: 肖佳欣, 柏劲松, 王涛. 密度非均匀流场中冲击加载双模态界面失稳现象的数值模拟[J]. 高压物理学报, 2018, 32(1): 012301. doi: 10.11858/gywlxb.20170501
XIAO Jiaxin, BAI Jingsong, WANG Tao. Numerical Study of Shock Wave Impacting on the Double-Mode Interface in Nonuniform Flows[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 012301. doi: 10.11858/gywlxb.20170501
Citation: XIAO Jiaxin, BAI Jingsong, WANG Tao. Numerical Study of Shock Wave Impacting on the Double-Mode Interface in Nonuniform Flows[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 012301. doi: 10.11858/gywlxb.20170501

密度非均匀流场中冲击加载双模态界面失稳现象的数值模拟

doi: 10.11858/gywlxb.20170501
基金项目: 

国家自然科学基金 11532012

国家自然科学基金 11372294

科学挑战专题 JCKY2016212A501

挑战计划 TZ2016001

详细信息
    作者简介:

    肖佳欣(1992—), 女, 硕士研究生, 主要从事流体力学研究. E-mail: crystalshaw1125@126.com

    通讯作者:

    柏劲松(1968—), 男, 研究员, 博士生导师, 主要从事计算力学研究. E-mail: bjsong@foxmail.com

  • 中图分类号: O354.5

Numerical Study of Shock Wave Impacting on the Double-Mode Interface in Nonuniform Flows

  • 摘要: 利用可压缩多介质黏性流动和湍流大涡模拟的二维计算程序MVFT-2D,针对初始非均匀流场密度为高斯分布、马赫数Ma=1.27激波作用下的双模态界面失稳现象,进行了数值模拟研究。数值模拟结果表明,处于非均匀流场中的双模态振幅耦合效应较弱,而且低密度区的初始大振幅界面扰动增长最快,高密度区的初始小振幅界面扰动增长最慢。通过进一步分析可知,在一定初始振幅范围内,非均匀流场低密度区的振幅增长率较高,混合区域更宽,湍动能较大,受初始振幅影响较大,导致该区域界面不稳定演化较快。其变化规律与均匀流场呈现相反趋势,说明非均匀流场界面不稳定性的发展规律与均匀流场存在较大差异。

     

  • 图  计算模型

    Figure  1.  Computational model

    图  均匀和非均匀流场的y方向密度

    Figure  2.  Density profiles of uniform and nonuniform flows

    图  t=1 ms时非均匀流场无扰动界面的密度云图

    Figure  3.  Density images of nonuniform flow without perturbation on interface at t=1 ms

    图  t=1 ms时不同初始振幅组合下的流场密度云图

    Figure  4.  Density images of uniform and nonuniform flows under different groups of initial amplitudes at t=1 ms

    图 A02不同情况下非均匀流场的振幅增长曲线

    Figure  5.  Perturbation amplitudes of nonuniform flows with 4 different amplitudes of A02

    图  均匀流场与非均匀流场高、低密度区的振幅变化

    Figure  6.  Perturbation amplitudes of uniform flow and high and low density zone of nonuniform flow with different A0

    图  不同初始扰动振幅下非均匀流场界面振幅增长率

    Figure  7.  Growth rate over time of nonuniform flows with 4 different amplitudes of A01

    图  非均匀流场高、低密度区及均匀流场中界面振幅增长率

    Figure  8.  Growth rate over time in high-density and low-density nonuniform flows and uniform flows

    图  初始均匀流场中不同初始振幅情况下的湍动能分布(实线:高密度;虚线:低密度)

    Figure  9.  Turbulent kinetic-energy profiles in high-density (solid line) and low-density (dashed line) uniform flows at various times under different initial amplitudes

    图  10  初始非均匀流场中不同初始振幅情况下的湍动能分布(实线:高密度;虚线:低密度)

    Figure  10.  Turbulent kinetic-energy profiles in high-density (dashed line) and low-density (solid line) nonuniform flows at various times under different initial amplitudes

    图  11  A01=2.5 mm,A02=7.5 mm时初始均匀和非均匀流场中尖钉处的斜压涡量分布

    Figure  11.  Baroclinic vorticity in uniform and nonuniform flows with A01=2.5 mm, A02=7.5 mm at various times

    表  1  气体参数

    Table  1.   Initial paramenters of air and SF6

    Gas Density/(kg·m-3) γ η/(10-6 m2·s-1) Prl D/(cm2·s-1)
    Air 1.29 1.40 15.5 0.71 0.204
    SF6 5.34 1.09 18.2 0.90 0.097
    下载: 导出CSV

    表  2  双模态界面的初始振幅

    Table  2.   Initial amplitudes of double-mode cosine interface

    No. A01/mm A02/mm
    1 5.0 7.5
    2 7.5 5.0
    3 2.5 7.5
    4 7.5 2.5
    5 7.5 7.5
    6 7.5 10.0
    7 10.0 7.5
    下载: 导出CSV
  • [1] YANG J, KUBOTA T, ZUKOSKI E E.Applications of shock-induced mixing to supersonic combustion[J].AIAA Journal, 1993, 31(5):854-862. doi: 10.2514/3.11696
    [2] ARNETT D.The role of mixing in astrophysics[J].Physics, 1999, 127(2):213-217. https://128.84.21.199/abs/astro-ph/9909031v1
    [3] AMENDT P, COLVIN J D, TIPTON R E, et al.Indirect-drive noncryogenic double-shell ignition targets for the national ignition facility:design and analysis[J].Physics of Plasmas, 2002, 9(5):2221-2233. doi: 10.1063/1.1459451
    [4] LINDL J, LANDEN O, EDWARDS J, et al.Review of the National Ignition Campaign 2009-2012[J].Physics of Plasmas, 2014, 21(2):020501. doi: 10.1063/1.4865400
    [5] SMALYUK V A, CASEY D T, CLARK D S, et al.First measurements of hydrodynamic instability growth in indirectly driven implosions at ignition-relevant conditions on the National Ignition Facility[J].Physical Review Letters, 2014, 112(18):185003. doi: 10.1103/PhysRevLett.112.185003
    [6] SMALYUK V A, TIPTON R E, PINO J E, et al.Measurements of an ablator-gas atomic mix in indirectly driven implosions at the National Ignition Facility[J].Physical Review Letters, 2014, 112(2):025002. doi: 10.1103/PhysRevLett.112.025002
    [7] KUMAR S, VOROBIEFF P, ORLICZ G, et al.Complex flow morphologies in shock-accelerated gaseous flows[J].Physica D:Nonlinear Phenomena, 2007, 235(1):21-28. https://www.sciencedirect.com/science/article/pii/S016727890700262X
    [8] ORLICZ G C, BALAKUMAR B J, TOMKINS C D, et al.A Mach number study of the Richtmyer-Meshkov instability in a varicose, heavy-gas curtain[J].Physics of Fluids, 2009, 21(6):064102. doi: 10.1063/1.3147929
    [9] ANDREWS M J. Workshop: research needs for material mixing at extremes[R]. Los Alamos National Laboratory, 2011.
    [10] 刘金宏, 谭多望, 柏劲松, 等.激波管实验研究非均匀流场RM不稳定性[J].实验力学, 2012, 27(2):160-164. http://d.wanfangdata.com.cn/Periodical_sylx201202005.aspx

    LIU J H, TAN D W, BAI J S, et al.Experimental study of Richtmyer-Meshkov instability in nonuniform flow by shock tube[J].Journal of Experimental Mechanics, 2012, 27(2):160-164. http://d.wanfangdata.com.cn/Periodical_sylx201202005.aspx
    [11] BAI J S, LIU J H, WANG T, et al.Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows[J].Physical Review E, 2010, 81(5):056302. doi: 10.1103/PhysRevE.81.056302
    [12] WANG T, BAI J S, LI P, et al.The numerical study of shock-induced hydrodynamic instability and mixing[J].Chinese Physics B, 2009, 18(3):1127-1135. doi: 10.1088/1674-1056/18/3/048
    [13] XIAO J X, BAI J S, WANG T.Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows[J].Physical Review E, 2016, 94(1):013112. doi: 10.1103/PhysRevE.94.013112
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  7559
  • HTML全文浏览量:  2883
  • PDF下载量:  267
出版历程
  • 收稿日期:  2017-01-04
  • 修回日期:  2017-03-13

目录

    /

    返回文章
    返回