Experimental Study and Numerical Analysis on the Pulling Force ofSelf-Propelled Straight-Swirling Integrated Jet Bit
-
摘要: 为探究径向侧钻微小井眼反喷牵引射流钻头自进力的主要影响因素,以反喷牵引直旋混合射流钻头的结构为基础,采用实验研究与数值模拟相结合的方法,研究了入口流量、井筒直径、正向喷距等因素对射流钻头自进力的影响规律。结果表明:反喷牵引直旋混合射流钻头的自进力大小受入口流量、井筒直径、实际正反流量比、返流强度等多种因素的综合影响;增大入口流量,增强射流钻头正、反向射流卷吸降压效果,有利于增大自进力;随着井筒直径的增加,反向射流的封隔效果减弱,返流干扰降低,自进力先增大后减小,并且在给定的流量下,存在获得最大自进力的井径范围。研究结果可为径向水平井射流钻头参数的优化设计与选取提供依据。Abstract: In order to investigate the main factors influencing the pulling force of a self-propelled straight-swirling integrated jet bit, we studied the effects of the inlet flow rate, wellbore diameter, and spray distance on the pulling force by combining experimental measurements and numerical simulations.The results show that the pulling force of the jet bit is influenced by the inlet flow rate, the well diameter, the flow rate ratio of forward and backward flows and the return flow in the wellbore.As the inlet flow rate increases, the pressure-reducing effects of the forward and backward jet rise, which is beneficial to the increase of the pulling force; when the wellbore diameter increases, the jet-sealing effects and the backflow interference will be weakened, leading to the pulling force increasing at first and then decreasing.At a designated inlet flow rate, an optimal wellbore diameter range can be obtained with the maximum pulling force.This work provides a significant reference for optimizing the design of jet bit parameters in radial horizontal wells.
-
Key words:
- high-pressure jet /
- pulling force /
- self-propelled jet bit /
- micro-hole
-
表 1 实验及数值模拟参数
Table 1. Parameters of the experiment and numerical simulation
No. Q/(L/min) D/(mm) H/(mm) 1# 42.5, 48.5, 50.1, 56.1, 60.0 50 20 2# 56.1 30, 40, 50, 60, 70 20 3# 56.1 50 10, 20, 30, 40, 50 -
[1] 赵阳升, 杨栋, 胡耀青, 等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报, 2001, 26(5):455-458. doi: 10.3321/j.issn:0253-9993.2001.05.002ZHAO Y S, YANG D, HU Y Q, et al.Study on the effective technology way for mining methane in low permeability coal seam[J].Journal of China Coal Society, 2001, 26(5):455-458. doi: 10.3321/j.issn:0253-9993.2001.05.002 [2] CHEN J H, LIANG Y P, CHENG G Q.Numerical analysis on coal-breaking process under high pressure water jet[J].Journal of Coal Science and Engineering (China), 2009, 15(3):289-294. doi: 10.1007/s12404-009-0314-3 [3] 刘勇, 卢义玉, 李晓红, 等.高压脉冲水射流顶底板钻孔提高煤层瓦斯抽采率的应用研究[J].煤炭学报, 2010, 35(7):1115-1119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001572776LIU Y, LU Y Y, LI X H, et al.Application of drilling in roof or floor with high pulse pressure water jet to improve gas drainage[J].Journal of China Coal Society, 2010, 35(7):1115-1119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001572776 [4] BUSET P, RⅡBER M, EEK A. Jet drilling tool: cost-effective lateral drilling technology for enhanced oil recovery[C]//SPE/ICoTA Coiled Tubing Roundtable. Houston, Texas: Society of Petroleum Engineers, 2001. [5] CIRIGLIANO R A, BLACUTT J F T. First experience in the application of radial perforation technology in deep wells[C]//Latin American & Caribbean Petroleum Engineering Conference. Buenos Aires, Argentina: Society of Petroleum Engineers, 2007. [6] BRUNI M A, BIASOTTI J H, SALOMONE G D. Radial drilling in Argentina[C]//Latin American & Caribbean Petroleum Engineering Conference. Buenos Aires, Argentina: Society of Petroleum Engineers, 2007. [7] LANDERS C W. Method of and apparatus for horizontal well drilling: US5853056 A[P]. 1998-12-29. [8] BUCKMAN W G Sr. Method and apparatus for jet drilling drainholes from wells: US6263984 B1[P]. 2001-07-24. [9] BUCKMAN W G Sr, DOTSON T L, MCDANIELS M D, et al. Nozzle for jet drilling and associated method: US6668948 B2[P]. 2003-12-30. [10] MARBUN B T H, ZULKHIFLY S, ARLIYANDO L, et al. Review of ultrashort-radius radial system (URRS)[C]//International Petroleum Technology Conference. Bangkok, Thailand, 2012. [11] 马东军, 李根生, 黄中伟, 等.自进式多孔射流钻头的自进机理及自进力影响规律[J].天然气工业, 2014, 34(4):99-104. doi: 10.3787/j.issn.1000-0976.2014.04.016MA D J, LI G S, HUANG Z W, et al.Mechanism of a self-propelled multi-hole jet bit and influencing rules on its self-propelled force[J].Natural Gas Industry, 2014, 34(4):99-104. doi: 10.3787/j.issn.1000-0976.2014.04.016 [12] 魏银好, 张东速, 王磊.自进式旋转水射流自进力的计算[J].煤矿机械, 2007, 28(8):14-15. doi: 10.3969/j.issn.1003-0794.2007.08.006WEI Y H, ZHANG D S, WANG L.Calculation of self-propelled rotary water jet propulsion[J].Coal Mine Machinery, 2007, 28(8):14-15. doi: 10.3969/j.issn.1003-0794.2007.08.006 [13] 迟焕鹏, 李根生, 黄中伟, 等.水力喷射径向水平井技术研究现状及分析[J].钻采工艺, 2013, 36(4):119-124. http://d.old.wanfangdata.com.cn/Periodical/zcgy201304038 [14] 廖华林, 李根生, 牛继磊, 等.径向水平钻孔直旋混合射流钻头设计与破岩特性[J].煤炭学报, 2013, 38(3):424-429. http://d.old.wanfangdata.com.cn/Periodical/mtxb201303012LIAO H L, LI G S, NIU J L, et al.Integrating straight & swirling jets bit design and its rock breaking characteristics for radial horizontal hole drilling[J].Journal of China Coal Society, 2013, 38(3):424-429. http://d.old.wanfangdata.com.cn/Periodical/mtxb201303012 [15] 廖华林, 李根生, 李敬彬, 等.径向水平钻孔直旋混合射流喷嘴流场特性分析[J].煤炭学报, 2012, 37(11):1896-1900. http://d.old.wanfangdata.com.cn/Periodical/mtxb201211022LIAO H L, LI G S, LI J B, et al.Flow field study on integrating straight and swirling jets for radial horizontal drilling[J].Journal of China Coal Society, 2012, 37(11):1896-1900. http://d.old.wanfangdata.com.cn/Periodical/mtxb201211022 [16] 宋剑, 李根生, 胡永堂, 等.同轴直射流与旋转射流组合的双射流湍流流场数值模拟[J].水动力学研究与进展(A辑), 2004, 19(5):671-675. http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz200405017SONG J, LI G S, HU Y T, et al.Numerical simulation of dual jet turbulent flow with combined coaxial swirling and round jet[J].Chinese Journal of Hydrodynamics, 2004, 19(5):671-675. http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz200405017