多模态RM不稳定性对初始扰动条件的依赖性分析

王涛 陶钢 柏劲松 李平 汪兵 杜磊

王涛, 陶钢, 柏劲松, 李平, 汪兵, 杜磊. 多模态RM不稳定性对初始扰动条件的依赖性分析[J]. 高压物理学报, 2016, 30(5): 380-386. doi: 10.11858/gywlxb.2016.05.006
引用本文: 王涛, 陶钢, 柏劲松, 李平, 汪兵, 杜磊. 多模态RM不稳定性对初始扰动条件的依赖性分析[J]. 高压物理学报, 2016, 30(5): 380-386. doi: 10.11858/gywlxb.2016.05.006
WANG Tao, TAO Gang, BAI Jing-Song, LI Ping, WANG Bing, DU Lei. Analysis of Dependence of Multi-Mode Richtmyer-Meshkov Instability on Initial Conditions[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 380-386. doi: 10.11858/gywlxb.2016.05.006
Citation: WANG Tao, TAO Gang, BAI Jing-Song, LI Ping, WANG Bing, DU Lei. Analysis of Dependence of Multi-Mode Richtmyer-Meshkov Instability on Initial Conditions[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 380-386. doi: 10.11858/gywlxb.2016.05.006

多模态RM不稳定性对初始扰动条件的依赖性分析

doi: 10.11858/gywlxb.2016.05.006
基金项目: 

国家自然科学基金 11532012

国家自然科学基金 11372294

冲击波物理与爆轰物理重点实验室基金 9140C670301150C67290

详细信息
    作者简介:

    王涛(1979—), 男,硕士,副研究员,主要从事计算力学研究.E-mail:wtao_mg@163.com

    通讯作者:

    柏劲松(1968—), 男,博士,研究员,主要从事计算力学研究.E-mail:bjsong@foxmail.com

  • 中图分类号: O354;O357

Analysis of Dependence of Multi-Mode Richtmyer-Meshkov Instability on Initial Conditions

  • 摘要: 利用可压缩多介质黏性流动和湍流大涡模拟程序MVFT,对多次冲击作用下的三维多模态Richtmyer-Meshkov(RM)不稳定性发展及其对初始扰动条件的依赖性进行了数值模拟分析。湍流混合区宽度在初始冲击后以幂次律增长,在反射冲击后和第一次反射稀疏波作用后,以具有不同增长因子的指数规律增长,在第一次反射压缩波作用后近似以线性规律增长; 而湍流混合区统计量则以类似的规律衰减。多模态RM不稳定性发展对初始扰动条件有很强的依赖性,主要体现在初始冲击后至反射冲击前和反射冲击后至第一次反射稀疏波作用前这两个阶段,即在第一次反射稀疏波作用后,湍流混合区的发展逐渐失去对初始扰动条件的记忆。

     

  • 图  计算模型

    Figure  1.  Computation model

    图  湍流混合区定义

    Figure  2.  Definition of turbulent mixing zone

    图  不同模型湍流混合区宽度随时间的增长历史

    Figure  3.  Time histories of growth of TMZ width (dTMZ) of different models

    图  SF6的体积分数为0.1和0.9的等值面所显示的不同时刻湍流混合区图像

    Figure  4.  Images of TMZ visualized by the volume fraction isosurface of 0.1 and 0.9 for SF6 at different times

    图  不同模型湍流混合区湍动能峰值时间历史

    Figure  5.  Time history of turbulent kinetic energy of different models in TMZ

    图  不同模型湍流混合区湍动能耗散率峰值时间历史

    Figure  6.  Time histories of turbulent kinetic energy dissipation rate of different models in TMZ

    图  不同模型湍流混合区拟涡能峰值时间历史

    Figure  7.  Time histories of enstrophy of different models in TMZ

    表  1  气体初始参数

    Table  1.   Initial properties of air and SF6

    Gas ρ/(kg/m3) p/(MPa) γ μlam/(μPa·s) D/(mm2/s)
    SF6 5.97 0.1 1.09 14.746 9.7
    Air 1.18 0.1 1.40 18.526 20.4
    下载: 导出CSV

    表  2  模型参数

    Table  2.   Model parameters

    Case η0/(mm) PS
    1 0.07 0.035
    2 0.14 0.070
    3 0.28 0.140
    4 0.56 0.280
    5 1.12 0.560
    下载: 导出CSV

    表  3  不同模型湍流混合区宽度的增长因子

    Table  3.   Growth factors of TMZ width of different models

    Case θ t1*/(ms) t2*/(ms)
    1 0.364 0.646 0.854
    2 0.352 0.519 0.875
    3 0.382 0.457 0.837
    4 0.449 0.433 0.788
    5 0.495 0.431 0.786
    下载: 导出CSV
  • [1] RICHTMYER R D.Taylor instability in shock acceleration of compressible fluids[J].Commun Pure Appl Math, 1960, 13(2):297-319. doi: 10.1002/(ISSN)1097-0312
    [2] MESHKOV E E.Instability of the interface of two gases accelerated by a shock wave[J].Sov Fluid Dyn, 1969, 4(5):101-104. doi: 10.1007/BF01015969
    [3] RAYLEIGH LORD.Scientific papers Ⅱ[M].Cambridge:Cambridge University Press, 1900:200.
    [4] TAYLOR G I.The instability of liquid surfaces when accelerated in a direction perpendicular to their plane[J].Proc R Soc London (Ser A), 1950, 201:192. http://www.jstor.org/stable/98398
    [5] CHANDRASEKHAR S.Hydrodynamic and hydromagnetic stability[M].London:Oxford University Press, 1961.
    [6] THORNBER B, DRIKAKIS D, YOUNGS D L, et al.The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability[J].J Fluid Mech, 2010, 654:99-139. doi: 10.1017/S0022112010000492
    [7] SCHILLING O, LATINI M.High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times:dynamics, dependence on initial conditions, and comparisons to experimental data[J].Acta Math Sci, 2010, 30(2):595-620. doi: 10.1016/S0252-9602(10)60064-1
    [8] LEINOV E, MALAMUD G, ELBAZ Y, et al.Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions[J].J Fluid Mech, 2009, 626:449-475. doi: 10.1017/S0022112009005904
    [9] BALASUBRAMANIAN S, ORLICZ G C, PRESTRIDGE K P, et al.Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock[J].Phys Fluids, 2012, 24(3):034103. doi: 10.1063/1.3693152
    [10] BAI J S, WANG B, WANG T, et al.Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock[J].Phys Rev E, 2012, 86(6):066319. doi: 10.1103/PhysRevE.86.066319
    [11] 王涛, 柏劲松, 李平, 等.单模态RM不稳定性的二维和三维数值计算研究[J].高压物理学报, 2013, 27(2):277-286. http://www.gywlxb.cn/CN/abstract/abstract1564.shtml

    WANG T, BAI J S, LI P, et al.Two and three dimensional numerical investigations of the single-mode Richtmyer-Meshkov instability[J].Chinese Journal of High Pressure Physics, 2013, 27(2):277-286. http://www.gywlxb.cn/CN/abstract/abstract1564.shtml
    [12] WANG T, BAI J S, LI P, et al.Large-eddy simulations of the Richtmyer-Meshkov instability of rectangular interface accelerated by shock waves[J].Sci China Ser G, 2010, 53(5):905-914. doi: 10.1007/s11433-010-0099-9
    [13] BAI J S, LIU J H, WANG T, et al.Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows[J].Phys Rev E, 2010, 81(2):056302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95b398a2f559a6c485b75ad8103a81ee
    [14] VREMAN A W.An eddy-viscosity subgrid-scale model for turbulent shear flow:algebraic theory and applications[J].Phys Fluids, 2004, 16(10):3670-3681. doi: 10.1063/1.1785131
    [15] WANG T, BAI J S, LI P, et al.The numerical study of shock-induced hydrodynamic instability and mixing[J].Chin Phys B, 2009, 18(3):1127-1135. doi: 10.1088/1674-1056/18/3/048
    [16] BAI J S, WANG T, LI P, et al.Numerical simulation of the hydrodynamic instability experiments and flow mixing[J].Sci China Ser G, 2009, 52(12):2027-2040. doi: 10.1007/s11433-009-0277-9
    [17] EREZ L, SADOT O, ORON D, et al.Study of the membrane effect on turbulent mixing measurements in shock tubes[J].Shock Waves, 2000, 10:241-251. doi: 10.1007/s001930000053
    [18] SREBRO Y, ELBAZ Y, SADOT O, et al.A general buoyancy-drag model for the evolution of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities[J].Laser Part Beams, 2003, 21:347-353. http://adsabs.harvard.edu/abs/2003LPB....21..347S
    [19] WANG T, BAI J S, LI P, et al.Large-eddy simulation of the multi-mode Richtmyer-Meshkov instability and turbulent mixing under reshock[J].High Energy Density Physics, 2016, 19:65-75. doi: 10.1016/j.hedp.2016.03.001
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  6817
  • HTML全文浏览量:  3060
  • PDF下载量:  160
出版历程
  • 收稿日期:  2015-02-13
  • 修回日期:  2015-04-21

目录

    /

    返回文章
    返回