Analysis of Dependence of Multi-Mode Richtmyer-Meshkov Instability on Initial Conditions
-
摘要: 利用可压缩多介质黏性流动和湍流大涡模拟程序MVFT,对多次冲击作用下的三维多模态Richtmyer-Meshkov(RM)不稳定性发展及其对初始扰动条件的依赖性进行了数值模拟分析。湍流混合区宽度在初始冲击后以幂次律增长,在反射冲击后和第一次反射稀疏波作用后,以具有不同增长因子的指数规律增长,在第一次反射压缩波作用后近似以线性规律增长; 而湍流混合区统计量则以类似的规律衰减。多模态RM不稳定性发展对初始扰动条件有很强的依赖性,主要体现在初始冲击后至反射冲击前和反射冲击后至第一次反射稀疏波作用前这两个阶段,即在第一次反射稀疏波作用后,湍流混合区的发展逐渐失去对初始扰动条件的记忆。
-
关键词:
- 可压缩多介质黏性流动和湍流 /
- 大涡模拟 /
- Richtmyer-Meshkov不稳定性 /
- 湍流混合区
Abstract: Using the in-house large-eddy simulation code MVFT, we investigated the three-dimensional multi-mode Richtmyer-Meshkov (RM) instability under multiple impingements and its dependence on initial conditions.After the initial shock, the width of the turbulent mixing zone (TMZ) grows with time in power-law.After the reshock and the impingement of the first reflected rarefaction wave, the TMZ width grows with time in the exponential law but with different growth factors.After the impingement of the first reflected compression wave, it grows with time in an approximately linear fashion, and the statistical quantities in TMZ decay with time in a similar way.The evolution of multi-mode RM instability is greatly dependent on the initial conditions between the initial shock and the impingement of the first reflected rarefaction wave.After the impingement of the first reflected rarefaction wave, the evolution of the turbulent mixing zone has lost the memory of the effect exerted by the initial conditions. -
表 1 气体初始参数
Table 1. Initial properties of air and SF6
Gas ρ/(kg/m3) p/(MPa) γ μlam/(μPa·s) D/(mm2/s) SF6 5.97 0.1 1.09 14.746 9.7 Air 1.18 0.1 1.40 18.526 20.4 表 2 模型参数
Table 2. Model parameters
Case η0/(mm) PS 1 0.07 0.035 2 0.14 0.070 3 0.28 0.140 4 0.56 0.280 5 1.12 0.560 表 3 不同模型湍流混合区宽度的增长因子
Table 3. Growth factors of TMZ width of different models
Case θ t1*/(ms) t2*/(ms) 1 0.364 0.646 0.854 2 0.352 0.519 0.875 3 0.382 0.457 0.837 4 0.449 0.433 0.788 5 0.495 0.431 0.786 -
[1] RICHTMYER R D.Taylor instability in shock acceleration of compressible fluids[J].Commun Pure Appl Math, 1960, 13(2):297-319. doi: 10.1002/(ISSN)1097-0312 [2] MESHKOV E E.Instability of the interface of two gases accelerated by a shock wave[J].Sov Fluid Dyn, 1969, 4(5):101-104. doi: 10.1007/BF01015969 [3] RAYLEIGH LORD.Scientific papers Ⅱ[M].Cambridge:Cambridge University Press, 1900:200. [4] TAYLOR G I.The instability of liquid surfaces when accelerated in a direction perpendicular to their plane[J].Proc R Soc London (Ser A), 1950, 201:192. http://www.jstor.org/stable/98398 [5] CHANDRASEKHAR S.Hydrodynamic and hydromagnetic stability[M].London:Oxford University Press, 1961. [6] THORNBER B, DRIKAKIS D, YOUNGS D L, et al.The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability[J].J Fluid Mech, 2010, 654:99-139. doi: 10.1017/S0022112010000492 [7] SCHILLING O, LATINI M.High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times:dynamics, dependence on initial conditions, and comparisons to experimental data[J].Acta Math Sci, 2010, 30(2):595-620. doi: 10.1016/S0252-9602(10)60064-1 [8] LEINOV E, MALAMUD G, ELBAZ Y, et al.Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions[J].J Fluid Mech, 2009, 626:449-475. doi: 10.1017/S0022112009005904 [9] BALASUBRAMANIAN S, ORLICZ G C, PRESTRIDGE K P, et al.Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock[J].Phys Fluids, 2012, 24(3):034103. doi: 10.1063/1.3693152 [10] BAI J S, WANG B, WANG T, et al.Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock[J].Phys Rev E, 2012, 86(6):066319. doi: 10.1103/PhysRevE.86.066319 [11] 王涛, 柏劲松, 李平, 等.单模态RM不稳定性的二维和三维数值计算研究[J].高压物理学报, 2013, 27(2):277-286. http://www.gywlxb.cn/CN/abstract/abstract1564.shtmlWANG T, BAI J S, LI P, et al.Two and three dimensional numerical investigations of the single-mode Richtmyer-Meshkov instability[J].Chinese Journal of High Pressure Physics, 2013, 27(2):277-286. http://www.gywlxb.cn/CN/abstract/abstract1564.shtml [12] WANG T, BAI J S, LI P, et al.Large-eddy simulations of the Richtmyer-Meshkov instability of rectangular interface accelerated by shock waves[J].Sci China Ser G, 2010, 53(5):905-914. doi: 10.1007/s11433-010-0099-9 [13] BAI J S, LIU J H, WANG T, et al.Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows[J].Phys Rev E, 2010, 81(2):056302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95b398a2f559a6c485b75ad8103a81ee [14] VREMAN A W.An eddy-viscosity subgrid-scale model for turbulent shear flow:algebraic theory and applications[J].Phys Fluids, 2004, 16(10):3670-3681. doi: 10.1063/1.1785131 [15] WANG T, BAI J S, LI P, et al.The numerical study of shock-induced hydrodynamic instability and mixing[J].Chin Phys B, 2009, 18(3):1127-1135. doi: 10.1088/1674-1056/18/3/048 [16] BAI J S, WANG T, LI P, et al.Numerical simulation of the hydrodynamic instability experiments and flow mixing[J].Sci China Ser G, 2009, 52(12):2027-2040. doi: 10.1007/s11433-009-0277-9 [17] EREZ L, SADOT O, ORON D, et al.Study of the membrane effect on turbulent mixing measurements in shock tubes[J].Shock Waves, 2000, 10:241-251. doi: 10.1007/s001930000053 [18] SREBRO Y, ELBAZ Y, SADOT O, et al.A general buoyancy-drag model for the evolution of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities[J].Laser Part Beams, 2003, 21:347-353. http://adsabs.harvard.edu/abs/2003LPB....21..347S [19] WANG T, BAI J S, LI P, et al.Large-eddy simulation of the multi-mode Richtmyer-Meshkov instability and turbulent mixing under reshock[J].High Energy Density Physics, 2016, 19:65-75. doi: 10.1016/j.hedp.2016.03.001