Raman Scattering Investigation of Tetramethylsilane under High Pressure
-
摘要: 选用四甲基硅烷作为富氢电子材料,利用拉曼光谱,分析其在室温高压(68.9~142.2 GPa)下的振动模式和结构特性。结果表明:随着压力的增大,四甲基硅烷仅保留常压下的3个振动模式,且均被压力锁定;从72.2 GPa开始,出现了新的振动模式,且均随着压力的增大而发生软化,预示着四甲基硅烷可能即将半金属化。Abstract: The vibrational and structural properties of tetramethylsilane were investigated using the Raman scattering measurements under pressures ranging from 68.9 to 142.2 GPa and at room temperature.The results revealed that 3 vibrational modes of tetramethylsilane under 68.9 GPa remain locked in a certain position and are quite stable upon compression to 142.2 GPa.Moreover, new vibrational modes appear with the pressure going up to 72.2 GPa and all exhibit softening with further compression, suggesting that tetramethylsilane will become semi-metallic under such high pressures.
-
Key words:
- high pressure /
- tetramethylsilane /
- Raman spectroscopy /
- vibrational mode /
- semi-metallic
-
图 3 TMS拉曼振动模式的频移与压力的关系(实心符号表示原有模式,空心符号表示新模式,100.6 GPa处的竖直虚线表示相界,插图显示显微镜观测的样品腔形态)
Figure 3. Raman shifts vs. pressure for the observed modes of TMS (The solid and hollow symbols represent original and new modes respectively, and the vertical dashed line under 100.6 GPa indicates the proposed phase boundary.The insets show the stressed samples via a microscope)
表 1 常压和高压下观测的TMS拉曼振动模式的类别和峰位
Table 1. Raman shifts and assignments of the observed vibrational modes of TMS under ambient and high pressures
Vibrational mode Vibrational type Raman shift/(cm-1) 0.1 MPa 68.9 GPa 72.2 GPa 84.4 GPa 100.6 GPa 122.1 GPa ν1 E(C─Si─C skeletal deformation) 201 ν2 F2(C─Si─C skeletal deformation) 244 ν3 A1(C─Si skeletal stretch) 595 848 853 865 872 869 ν4 F2(C─Si skeletal stretch) 697 ν5 E(CH3 rocking), F2(CH3 rocking) 869 968 976 971 970 983 ν6 A1(CH3 symmetrical deformation), F2(CH3 symmetrical deformation) 1 265 ν7 E(CH3 nonsymmetrical deformation), F2(CH3 nonsymmetrical deformation) 1 420 ν8 E(CH3 symmetrical stretch), F2(CH3 symmetrical stretch) 2 903 3 214 3 218 3 236 3 259 3 296 ν9 E(CH3 nonsymmetrical stretch), F2(CH3 nonsymmetrical stretch) 2 963 ν10 3 649 3 465 ν11 3 924 3 827 3 801 3 634 ν12 3 922 3 903 -
[1] GINZBURG V L.Nobel lecture:on superconductivity and superfluidity (what I have and have not managed to do) as well as on the "physical minimum" at the beginning of the 21st century[J].Rev Mod Phys, 2004, 76(3):981-998. doi: 10.1103/RevModPhys.76.981 [2] ASHCROFT N W.Metallic hydrogen:a high-temperature superconductor?[J].Phys Rev Lett, 1968, 21(26):1748-1749. doi: 10.1103/PhysRevLett.21.1748 [3] RICHARDSON C F, ASHCROFT N W.High temperature superconductivity in metallic hydrogen:electron-electron enhancements[J].Phys Rev Lett, 1997, 78(1):118-121. http://adsabs.harvard.edu/abs/1997PhRvL..78..118R [4] HOWIE R T, GUILLAUME C L, SCHELER T, et al.Mixed molecular and atomic phase of dense hydrogen[J].Phys Rev Lett, 2012, 108(12):125501. doi: 10.1103/PhysRevLett.108.125501 [5] ZHA C S, LIU Z, HEMLEY R J.Synchrotron infrared measurements of dense hydrogen to 360 GPa[J].Phys Rev Lett, 2012, 108(14):146402. doi: 10.1103/PhysRevLett.108.146402 [6] ASHCROFT N W.Hydrogen dominant metallic alloys:high temperature superconductors?[J].Phys Rev Lett, 2004, 92(18):187002. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212330369/ [7] CHEN X J, STRUZHKIN V V, SONG Y, et al.Pressure-induced metallization of silane[J].Proc Natl Acad Sci, 2008, 105(1):20-23. doi: 10.1073/pnas.0710473105 [8] EREMETS M I, TROJAN I A, MEDVEDEV S A, et al.Superconductivity in hydrogen dominant materials:silane[J].Science, 2008, 319(5869):1506-1509. doi: 10.1126/science.1153282 [9] HANFLAND M, PROCTOR J E, GUILLAUME C L, et al.High-pressure synthesis, amorphization, and decomposition of silane[J].Phys Rev Lett, 2011, 106(9):095503. doi: 10.1103/PhysRevLett.106.095503 [10] STROBEL T A, GONCHAROV A F, SEAGLE C T, et al.High-pressure study of silane to 150 GPa[J].Phys Rev B, 2011, 83(14):144102. doi: 10.1103/PhysRevB.83.144102 [11] SCHELER T, DEGTYAREVA O, MARQUES M, et al.Synthesis and properties of platinum hydride[J].Phys Rev B, 2011, 83(21):214106. doi: 10.1103/PhysRevB.83.214106 [12] PRATT L R, HSU C S, CHANDLER D.Statistical mechanics of small chain molecules in liquids. Ⅰ. effects of liquid packing on conformational structures[J].J Chem Phys, 1978, 68(9):4202-4213. doi: 10.1063/1.436284 [13] SILVER S.The normal vibrations of molecules of the tetramethylmethane type[J].J Chem Phys, 1940, 8(12):919-933. doi: 10.1063/1.1750606 [14] WATARI F.Vibrational spectra of (CD3)4M, and normal coordinate calculations for (CH3)4M and (CD3)4M (M=Si, Ge, Sn, Pb)[J].Spectrochim Acta A, 1978, 34(12):1239-1244. doi: 10.1016/0584-8539(78)80087-7 [15] RANK D H.The Raman spectrum of tetramethylmethane[J].J Chem Phys, 1933, 1(8):572-575. doi: 10.1063/1.1749330 [16] EDSALL J T.Raman spectra of amino acids and related substances Ⅲ.ionization and methylation of the amino group[J].J Chem Phys, 1937, 5(4):225-237. doi: 10.1063/1.1750013 [17] SHELINE R K, PITZER K S.The infra-red spectrum of tetramethyl lead and the force constants of M(CH3)4 type molecules[J].J Chem Phys, 1950, 18(5):595-601. doi: 10.1063/1.1747707 [18] PERRY S, JONAS J.High pressure Raman study of vibrational relaxation in liquids of group Ⅳ tetramethyl compounds[J].J Chem Phys, 1983, 79(12):6308-6311. doi: 10.1063/1.445738 [19] MONES A H, POST B.X-ray diffraction study of crystalline neopentane (tetramethyl methane)[J].J Chem Phys, 1952, 20(4):755-756. doi: 10.1063/1.1700547 [20] VALERGA A J, KILPATRICK J E.Entropy and related thermodynamic properties of tetramethylgermane[J].J Chem Phys, 1970, 52(9):4545-4549. doi: 10.1063/1.1673681 [21] KREBS B, HENKEL G, DARTMANN M.Structure of tetramethyltin, Sn(CH3)4[J].Acta Cryst C, 1989, 45:1010-1012. doi: 10.1107/S0108270189000090 [22] QIN Z X, ZHANG J B, TROYAN I, et al.High-pressure study of tetramethylsilane by Raman spectroscopy[J].J Chem Phys, 2012, 136(2):024503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=71977d5b7ef88c956b468178879830b8 [23] GAJDA R, KATRUSIAK A.The interplay of molecular conformation and crystal packing in pressure-frozen tetramethylsilane[J].Cryst Growth Des, 2008, 8(1):211-214. doi: 10.1021/cg070135h [24] SHIMIZU K, MURATA H.Normal vibrations and calculated thermodynamic properties of tetramethylsilane[J].J Mol Spectrosc, 1960, 5:44-51. http://www.sciencedirect.com/science/article/pii/0022285261900649 [25] ADAMS D M, POGSON M.Vibrational spectroscopy at very high pressures.part 48.a Raman study of the phase behaviour of CH3HgX (X=Cl, Br, I), and the crystal structure of CH3HgBr[J].J Phys C, 1988, 21(6):1065-1079. doi: 10.1088/0022-3719/21/6/013 [26] RUSH J J, HAMILTON W C.Free rotation of methyl groups in dimethyltin difluoride[J].Inorg Chem, 1966, 5(12):2238-2239. doi: 10.1021/ic50046a037 [27] ADAMS D M, HAINES J.Phase transitions in the dimethyl thallium (Ⅲ) halides, (CH3)2TlX (X=Cl, Br, I)[J].Spectrochim Acta A, 1993, 49(2):237-248. http://www.sciencedirect.com/science/article/pii/058485399380178D [28] LIN Y, MAO W L, DROZD V, et al.Raman spectroscopy study of ammonia borane at high pressure[J].J Chem Phys, 2008, 129(23):234509. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19102540 [29] DROZDOV A P, EREMETS M I, TROYAN I A.Conventional superconductivity at 190 K at high pressures[EB/OL].[2015-09-10].http://arxiv.org/abs/1412.0460.