Dimensionless Formulae for Punching Shear Strengthof Reinforced Concrete Slabs

XIAN Yu-Xi WEN He-Ming

咸玉席, 文鹤鸣. 钢筋混凝土平板冲剪强度的无量纲公式[J]. 高压物理学报, 2016, 30(4): 291-300. doi: 10.11858/gywlxb.2016.04.005
引用本文: 咸玉席, 文鹤鸣. 钢筋混凝土平板冲剪强度的无量纲公式[J]. 高压物理学报, 2016, 30(4): 291-300. doi: 10.11858/gywlxb.2016.04.005
XIAN Yu-Xi, WEN He-Ming. Dimensionless Formulae for Punching Shear Strengthof Reinforced Concrete Slabs[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 291-300. doi: 10.11858/gywlxb.2016.04.005
Citation: XIAN Yu-Xi, WEN He-Ming. Dimensionless Formulae for Punching Shear Strengthof Reinforced Concrete Slabs[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 291-300. doi: 10.11858/gywlxb.2016.04.005

Dimensionless Formulae for Punching Shear Strengthof Reinforced Concrete Slabs

doi: 10.11858/gywlxb.2016.04.005
Funds: 

National Natural Science Foundation of China 11172298

More Information
    Author Bio:

    XIAN Yu-Xi (1981—), male, doctor, major in impact dynamics.E-mail: yyxian@ustc.edu.cn

    Corresponding author: WEN He-Ming (1965—), male, master, professor, major in impact dynamics.E-mail: hmwen@ustc.edu.cn
  • 摘要: 冲剪研究对钢筋混凝土平板和柱连接之间承载能力的评估以及核电厂中安全壳的安全计算和安全评估有重要意义。先前研究都忽略了跨深比对冲剪强度的影响,且现有设计准则中所用的方程量纲不一致,故大大限制了其使用范围和精度。给出了一个新的无量纲公式,考虑了钢筋数量、钢筋间距和跨深比的影响,可用于预测钢筋混凝土平板在冲头作用下的冲剪强度。结果表明, 新方程与已有实验结果吻合得很好,且优于现有设计准则。

     

  • Figure  1.  Failure criterion for concrete (α0 is theangle of tangent to yield line with vertical)

    Figure  2.  Control perimeters of concrete slabs loaded by circular column as specified inACI 318-11, Euro-code 2, JSCE and BS8110-97

    Figure  3.  Schematic showing punching shear failure(L is the side length of a square reinforcedconcrete slab)

    Figure  4.  Dimensionless punching shear strengthvs. span-to-depth ratio

    Figure  5.  Dimensionless punching shear strengthvs. slab thickness to column diameter ratio

    Figure  6.  Comparison of the present empirical model(Eq.(13)) with available experimental data

    Figure  7.  Comparison of the present empiricalmodel with the experimental results forsquare reinforced concrete slabsloaded by a circular punch

    Figure  8.  Comparison of the present empiricalmodel with the experimental resultsfor the reinforced concrete slabsloaded by a square punch

    Table  1.   Comparisons of various formulae with available experimental results

    Exp.No. L/(mm) S/(mm) H/(mm) de/(mm) d/(mm) fc/(MPa) ζ/(%) Pu/(kN)(Exp.) Pu/Pm Ref.
    ACI318-11 BS8110-97 JSCE(2002) Euro-code2 (2004) Eq.(11)
    IA15b-7 1840 1710 153 124 150 28.0 2.03 247.2 1.33 1.25 0.88 0.84 1.03
    IA15b-8 1840 1710 153 121 150 27.5 2.03 247.2 1.39 1.30 0.92 0.88 1.05
    IA15b-9 1840 1710 150 117 150 25.5 2.18 274.6 1.68 1.51 1.08 1.02 1.27
    IA15b-10 1840 1710 150 117 150 25.5 2.18 274.6 1.68 1.51 1.08 1.02 1.27
    IA15c-11 1840 1710 153 121 150 31.5 2.16 333.5 1.75 1.64 1.14 1.11 1.24 [9]
    IA15c-12 1840 1710 154 122 150 30.4 2.16 331.5 1.75 1.63 1.14 1.10 1.27
    IA30a-22 1840 1710 154 128 300 27.8 1.01 254.0 0.85 1.08 0.81 0.85 0.79
    IA30a-23 1840 1710 151 125 300 26.7 1.04 207.9 0.73 0.91 0.68 0.72 0.68
    IA30e-34 1840 1710 150 120 300 26.9 1.00 331.5 1.22 1.54 1.15 1.22 1.14
    IA30e-35 1840 1710 153 122 300 24.6 0.98 331.5 1.25 1.57 1.19 1.24 1.23
    2A 127 101.6 25.4 127 21.437 47.7 3.36 22.46 3.13 1.75 1.13 0.99 0.71
    2B 254 203.2 50.8 254 42.545 47.7 3.07 78.73 2.77 1.90 1.22 1.16 0.88
    2C 508 406.4 101.6 508 85.09 47.7 3.07 309.6 2.72 2.22 1.43 1.42 0.86 [16]
    3A 127 101.6 25.4 127 21.437 45.3 2.74 16.32 2.33 1.38 0.90 0.78 0.75
    3B 254 203.2 50.8 254 42.545 45.3 2.43 60.63 2.19 1.61 1.05 0.98 1.08
    3C 508 406.4 101.6 508 85.09 45.3 2.43 228.9 2.07 1.80 1.17 1.16 1.02
    F1 203.2 200 101.6 83 101.6 39.3 1.75 479.5 4.86 4.60 3.07 1.97 1.16
    F2 406.4 400 101.6 83 101.6 39.3 1.75 204.2 2.07 1.96 1.30 1.26 1.01
    F3 609.6 600 101.6 83 101.6 39.3 1.75 149.0 1.51 1.43 0.95 0.94 1.20 [19]
    F4 812.8 800 101.6 83 101.6 39.3 1.75 129.0 1.31 1.24 0.83 0.82 1.04
    F5 1500 1200 101.6 83 101.6 39.3 1.75 138.8 1.41 1.33 0.89 0.88 1.12
    S12 960 674 275 250 250 28.2 0.42 1049 1.60 2.97 2.07 1.53 0.85 [14]
    S13 960 674 275 250 250 19.8 0.42 803 1.45 2.53 1.87 1.30 0.93
    9-1 2750 2600 180 143 300 37.3 1.48 628 1.57 1.88 1.32 1.44 0.97 [1]
    9-2 2750 2600 191 171 300 28.5 1.18 626 1.40 1.79 1.29 1.31 1.14
    12-1 2900 2650 280 240 500 29.3 1.3 1662 1.67 2.28 1.66 1.75 0.94 [1]
    12-2 1400 1200 127 109 226 33.3 1.2 326 1.66 1.95 1.39 1.48 1.21
    S1 850 600 275 242 250 39.8 0.40 1363 1.75 3.49 2.30 1.68 0.81
    S2 850 600 277 243 250 28.4 0.40 1015 1.53 2.90 2.02 1.39 0.83
    S3 850 600 278 250 250 29.8 0.39 1008 1.43 2.75 1.90 1.30 0.78 [14](Squareslabs)
    S7 850 600 277 246 250 14.4 0.40 622 1.30 2.19 1.71 1.04 1.01
    S8 850 600 277 245 250 31.4 0.25 915 1.30 2.92 2.00 1.39 1.19
    S9 850 600 277 244 250 25.5 0.40 904 1.43 2.66 1.89 1.27 0.83
    S11 850 600 274 235 250 28.2 0.41 1190 1.90 3.53 2.47 1.71 1.00
    S14 850 600 273 240 250 21.4 0.41 1100 1.95 3.48 2.54 1.67 1.23
    下载: 导出CSV

    Table  2.   Comparisons of various formulae through the statistical method

    Equation Pu/Pm
    Mean Standard deviation Coefficient of variation 95% confidence interval
    ACI 318-11 1.83 0.82 44.90 1.83±0.32
    BS8110-97 1.80 0.72 39.78 1.80±0.28
    JSCE (2002) 1.25 0.48 38.72 1.25±0.19
    Euro-code 2 (2004) 1.15 0.31 26.50 1.15±0.12
    Eq.(11) 1.03 0.18 17.45 1.03±0.07
    下载: 导出CSV
  • [1] The International Federation for Structural Concrete.Punching of structural concrete slabs: FIB Bulletin No.12[R].Lausanne, Switzerland: The Internal Federation for Structural Concrete, 2001.
    [2] YANKELVSKY D Z.Local response of concrete slabs to low velocity missile impact[J].Int J Impact Eng, 1997, 19(4):331-343. doi: 10.1016/S0734-743X(96)00041-3
    [3] BEN-DOR G, DUBINSKY A, ELPERIN T.Estimation of perforation thickness for concrete shield against high-speed impact[J].Nucl Eng Des, 2010, 240:1022-1027. doi: 10.1016/j.nucengdes.2009.12.029
    [4] LI Q M, TONG D J.Perforation thickness and ballistic limit of concrete target subjected to rigid projectile impact[J].ASCE J Eng Mech, 2003, 129(9):1083-1091. doi: 10.1061/(ASCE)0733-9399(2003)129:9(1083)
    [5] ACI Committee 318.American Concrete Institute (ACI) building code requirements for structural concrete[S].Farmington Hills, Michigan: American Concrete Institute, 2012.
    [6] European Committee for Standardization.Design of concrete structures-Part 1.1: general rules and rules for buildings[S].Brussels, Belgium: European Committee for Standardization, 2004: 225.
    [7] UEDA T.Standard specification for concrete structures-2002[S].Japan: Japan Society of Civil Engineering, 2002.
    [8] British Standards Institution.Structural use of concrete.Part 1: code of practice for design and construction[S].Milton Keynes: British Standard Association, 1985.
    [9] KINNUNEN S, NYLANDER H.Punching of concrete slabs without shear reinforcement[M].Stockholm:Transactions of the royal institute of Technology, 1960:112.
    [10] MUTTONI A.Shear and punching strength of slabs without shear reinforcement[J].Beton-Stahlbetonbau, 2003, 98(2):74-78. doi: 10.1002/best.v98.2
    [11] BRAESTRUP M W, NIELSEN M P, JENSEN B C, et al.Axisymmetric punching and reinforced concrete: No.R-75[R].Copenhagen, Denmark: Structural Research Laboratory, Technical University of Denmark, 1976: 33.
    [12] JIANG D H, SHEN J H.Strength of concrete slabs in punching shear[J].J Struct Eng, ASCE, 1986, 112(12):2578-2591. doi: 10.1061/(ASCE)0733-9445(1986)112:12(2578)
    [13] LIONELLO B.Punching shear strength in concrete slabs[J].ACI Struct J, 1990, 87(2):208-218. doi: 10.1061-(ASCE)0733-9445(1986)112-12(2578)/
    [14] HALLGREN M, KINNUNEN S, NYLANDER H.Punching shear tests on column footings[J].Nordic Concrete Res, 1998, 21:1-22.
    [15] YANKELEVSKY D Z, LEIBOWITZ O.Punching shear in concrete slabs[J].Int J Mech Sci, 1999, 41:1-15. doi: 10.1016/S0020-7403(97)00086-6
    [16] BAZENT Z P, CAO Z P.Size effect in punching shear failure of slabs[J].ACI Struct J, 1987, 84(5):44-53. http://cn.bing.com/academic/profile?id=05ace0b2c1bb99db8cae47cc2b2d9ad3&encoded=0&v=paper_preview&mkt=zh-cn
    [17] LI Q M, REID S R, WEN H M, et al.Local impact effects of hard missiles on concrete targets[J].Int J Impact Eng, 2005, 32:224-284. doi: 10.1016/j.ijimpeng.2005.04.005
    [18] MENÉTREY P.Synthesis of punching failure in reinforced concrete[J].Cement Concrete Comp, 2002, 2(2):497-807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cec8864d33e6b87e2a321dd330ab384d
    [19] LOVROVICH J S, MCLEAN D I.Punching shear behavior of slabs with varying span-to-depth ratios[J].ACI Struct J, 1990, 87(5):507-511. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=151558043892de4ec42503e2f1d6e27e
    [20] OZDEN S, EROSY U, OZTURAN T.Punching shear tests of normal-and high-strength concrete flat plates[J].Can J Civil Eng, 2006, 33(11):1389-1400. doi: 10.1139/l06-089
    [21] SAGASETA J, MOTTONI A, RUIZ M F, et al.Non-axis-symmetrical punching shear around internal columns of RC slabs without transverse reinforcement[J].Mag Concrete Res, 2011, 63(6):441-457. doi: 10.1680/macr.10.00098
    [22] REGAN P.Symmetric punching of reinforced concrete slabs[J].Mag Concrete Res, 1986, 38(136):115-128. doi: 10.1680/macr.1986.38.136.115
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  7037
  • HTML全文浏览量:  3200
  • PDF下载量:  131
出版历程
  • 收稿日期:  2014-08-25
  • 修回日期:  2014-11-05

目录

    /

    返回文章
    返回