Damage and Fracture Model for Shell of PELE
-
摘要: 结合横向效应增强型侵彻体(PELE)侵彻金属靶板的数值模拟结果和实验结果,将PELE弹丸壳体膨胀断裂过程分为加速膨胀和匀速膨胀两个阶段。在封加波提出的损伤度模型的基础上,推导得到PELE弹丸壳体的损伤断裂方程;并通过PELE壳体断裂实例计算了PELE弹丸壳体膨胀断裂过程的参数,分析了弹丸着靶速度与壳体断裂之间的关系,为PELE弹丸设计提供了理论指导。
-
关键词:
- 横向效应增强型侵彻体 /
- 壳体 /
- 横向效应 /
- 损伤断裂 /
- 临界应变
Abstract: Combining the simulation with the experimental results of the penetration process of penetrator with enhanced lateral effect (PELE) in metallic target, the process of the shell expansion can be divided into two stages, the accelerating expansion and the uniform expansion.Based on the model of the damage function by Feng Jiabo, we obtained the damage and fracture evolution equation responsible for the shell of PELE.According to the damage evolution equation responsible for the shell of PELE, the fracture process parameters of PELE were calculated.Moreover, the relationship between shell fracture critical strain and velocity of the projectile was analysised, which is useful in engineering design of PELE.-
Key words:
- penetrator with enhanced lateral effect /
- shell /
- lateral effect /
- damage and fracture /
- critical strain
-
表 1 材料模型
Table 1. Material model
Component Material species Equation of state Strength model Invalidation model Shell 35CrMnSi Linear Johnson-Cook Principal stress Core Polyethylene Shock von-Mises - Target plate RHA Shock von-Mises Material strain 表 2 材料参数
Table 2. Material parameters
Material ρ/(g/cm3) E/(GPa) σ/(MPa) G/(GPa) ν 35CrMnSi 7.8 210 1 270 81 0.33 Polyethylene 0.94 1.5 0.26 0.55 0.45 RHA 7.8 171 1400 64.1 0.33 表 3 着靶速度与穿靶时间统计
Table 3. Statistics of the impact velocity and the penetrating time
Experimental No. Velocity/(m/s) Time/(μs) Radical velocity/(m/s) 1 643 8.4 127 2 694 7.2 142 3 762 6.5 153 表 4 3个时刻膨胀断裂过程的参数
Table 4. Parameters of expansion and fracture at three time points
t/(μs) $\dot{e}^{\mathrm{p}} /\left(10^{4} \mathrm{~s}^{-1}\right)$ R2/(mm) u0/(m/s) 8.4 2.62 17.7 127 7.2 1.91 18.6 142 6.5 1.71 19.9 153 -
[1] Kesberg G, Schirm V, Kerk S. PELE-the future ammunition concept[C]//21st international Symposium on Ballistics. Adelaide, Australia, 2004: 1134-1144. [2] Paulus G, Schirm V. Impact behavior of PELE projectiles perforating thin target plates[J]. Int J Impact Eng, 2006, 33(1): 1134-1144. [3] Recht R, Ipson T. Ballistic perforation dynamics[J]. J Appl Mech, 1963, 30(3): 384-390. doi: 10.1115/1.3636566 [4] Mott N F. Fragmentation of shell casings and the theory of rupture in metals[M]//Fragmentation of Rings and Shells. Berlin/Heidelberg: Springer-Verlag, 2006: 295-325. [5] Seaman L, Curran D R, Shockey D A. Computational models for ductile and brittle fracture[J]. J Appl Phys, 1976, 47(11): 4814-4826. doi: 10.1063/1.322523 [6] 封加波, 经福谦, 苏林祥, 等.对薄层柱壳爆炸膨胀断裂过程的研究[J].高压物理学报, 1988, 2(2): 97-103.Feng J B, Jing F Q, Su L X, et al. Studies of the explosion expanding-fracture process of a thin cylindrical shell[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 97-103. (in Chinese) [7] Feng J, Jing F, Zhang G, et al. Dynamic ductile fragmentation and the damage function model[J]. J Appl Phys, 1997, 81(6): 2575-2578. doi: 10.1063/1.363921 [8] 蒋建伟, 张谋, 门建兵, 等. PELE弹侵彻过程壳体膨胀破裂的数值模拟[J].计算力学学报, 2009, 26(4): 568-572.Jiang J W, Zhang M, Men J B, et al. 3D simulation of expanding motion and fracture of ductile metal ring[J]. Chinese Journal of Computational Mechanics, 2009, 26(4): 568-572. (in Chinese) [9] Haghpanah Jahromi B, Vaziri A. Instability of cylindrical shells with single and multiple cracks under axial compression[J]. Thin-Walled Struct, 2012, 54: 35-43. doi: 10.1016/j.tws.2012.01.014 [10] Fu J, To C W S. Bulging fractor and geometrically nonlinear responses of cracked shell structures under internal pressure[J]. Eng Struct, 2012, 41: 456-463. doi: 10.1016/j.engstruct.2012.04.001 [11] 荆秀芝, 陈文, 杨武明.金属材料应用手册[M].西安: 陕西科学技术出版社, 1989.Jing X Z, Chen W, Yang W M. Application Manal for Metal Material[M]. Xi'an: Shanxi Science and Technology Publishing House, 1989. (in Chinese)