Magnetically Driven Isentropic Compression of 45 Steel
-
摘要: 在已有的众多准等熵加载技术中,磁驱动准等熵加载技术具有准等熵程度高、压力范围大、实验材料种类多、效费比高等特点。利用中物院流体物理研究所建成的磁驱动准等熵压缩和高速飞片实验装置CQ-1.5(最高加载压力为50 GPa), 成功开展了45钢的准等熵压缩实验,对装置的主要参数进行了介绍;利用激光干涉测试系统DPS获得了45钢飞片的自由面速度历史,通过反积分处理给出了材料准等熵压缩的p-V关系。通过分析实验数据,获得了45钢3种形式的等熵方程的参数。实验获得的最高等熵压力为47.5 GPa。
-
关键词:
- 准等熵压缩 /
- 磁驱动 /
- 流场反演方法 /
- Lagrange分析 /
- 等熵方程
Abstract: The technique of magnetically driven isentropic compression has many advantages over previous experimental techniques of quasi-isentropic compression, such as the smoothly increasing pressure loading to a high magnitude without any initial shocks, the ability to investigate several samples under identical loading conditions in one shot, high benefit-cost ratio, etc.The main parameters of CQ-1.5 rebuilt by Institute of Fluid Physics, CAEP, are detailed.This apparatus aims at isentropic compression and driving high-speed flyers, its designed maximum pressure is 50 GPa.The samples of 45 steel are isentropically compressed by CQ-1.5 to a pressure as high as 47.5 GPa without any appearance of shock, a Doppler pins system (DPS) is used to record the velocity history of flyers.We use a backward integration method to treat the experimental data, and obtain thep-V relation of 45 steel under quasi-isentropic compression.We also ascertain the parameters of 3 forms of isentropic equation of 45 steel.The maximum isentropic pressure in this work is 47.5 GPa. -
表 1 实验得到的45钢准等熵压缩方程参数
Table 1. Parameters of quasi-isentropic compression equation of 45 steel determined by experiment
Isentropic
equationEquation form pmax/
(GPa)Parameters Birch $\begin{aligned} p(V)=& \frac{3}{2} B_{0}\left[\left(\frac{V_{0}}{V}\right)^{\frac{7}{3}}-\left(\frac{V_{0}}{V}\right)^{\frac{5}{3}}\right] \times \\ &\left\{1-\xi\left[\left(\frac{V_{0}}{V}\right)^{\frac{2}{3}}-1\right]\right\} \end{aligned}$ 41 ξ=0.5, B0=65.4 GPa Hugoniot $p=p_{0}+\frac{\rho_{0} c_{0}^{2}\left(1-\frac{V}{V_{0}}\right)}{\left[1-\lambda\left(1-\frac{V}{V_{0}}\right)\right]^{2}}$ 41 c0=3 104 m/s, λ=2.495 Polynomial $p=\sum\limits_{j=1}^{m} B_{j}\left(\frac{V_{0}}{V}-1\right)^{j}, m=1,2,3, \cdots$ 41 B1=37 GPa, B2=110 GPa, B3=5 100 GPa -
[1] Hawke R S, Durre D E, Huebel J G, et al. Method of isentropically compressing materials to several megabars[J]. J Appl Phys, 1972, 43(6): 2734-2741. doi: 10.1063/1.1661586 [2] Cauble R, Reisman D B, Asay J R, et al. Isentropic compression experiments to 1 Mbar using magnetic pressure[J]. J Phys: Condens matter, 2002, 14(44): 10821-10824. doi: 10.1088/0953-8984/14/44/383 [3] 孙承纬.磁驱动等熵压缩和高速飞片的实验技术[J].爆轰波与冲击波, 2005, (2): 84-92.Sun C W. Magnetically driven isentropic compression and high-speed flyers experimental techniques[J]. Detonation Waves & Shock Waves, 2005, (2): 84-92. (in Chinese) [4] Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69(14): 144209. doi: 10.1103/PhysRevB.69.144209 [5] Hall C A. Isentsropic compression experiments on the Sandia Z accelerator[J]. Phys Plasmas, 2000, 7(5): 2069-2075. doi: 10.1063/1.874029 [6] Wang G J, Sun C W, Tan F L, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments[J]. Rev Sci Instrum, 2008, 79(5): 053904. doi: 10.1063/1.2920200 [7] 王翔, 王为, 傅秋卫, 等.一种新型全光纤弹速测量系统的研制[J].光电工程, 2004, 31(10): 43-46.Wang X, Wang W, Fu Q Y, et al. Development of a novel all fiber optical system for measuring projectile velocity[J]. Opto-Electronic Engineering, 2004, 31(10): 43-46. (in Chinese) [8] Barker L M, Hollenback R E. Laser interferometer for measuring high velocity of any reflecting surface[J]. J Appl Phys, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986 [9] Chau H H, Mcmilan C F, Osher J E. Application of Fabry-Perot velocimeter to high speed experiments, UCRL-98483[R]. Livermore: Lawrence Livermore National Laboratory, 1988. [10] 张艳艳, 巩轲, 何淑芳, 等.激光多普勒测速技术进展[J].激光与红外, 2010, 40(11): 1157-1162.Zhang Y Y, Gong K, He S F, et al. Progress in laser Doppler velocity measurement techniques[J]. Laser & Infrared, 2010, 40(11): 1157-1162. (in Chinese) [11] 王刚华, 柏劲松, 孙承纬, 等.准等熵压缩流场反演技术研究[J].高压物理学报, 22(2), 2008: 149-152.Wang G H, Bai J S, Sun C W, et al. Backward integration method for tracing isentropic compression field[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 149-152. (in Chinese)