[1] |
Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface[J]. J Fluid Mech, 1981, 111: 123-140. doi: 10.1017/S0022112081002322
|
[2] |
Pearson A, Cox E, Blake J R, et al. Bubble interactions near a free surface[J]. Eng Anal Bound Elem, 2004, 28(4): 295-313. doi: 10.1016/S0955-7997(03)00079-1
|
[3] |
Liu M B, Liu C R, Lam K Y. A one dimensional mesh free particle formulation for simulating shock waves[J]. Shock Waves, 2003, 13: 201-211. doi: 10.1007/s00193-003-0207-0
|
[4] |
Liu M B, Liu C R, Zong Z, et al. Numerical simulation of underwater explosion by SPH[J]. Advan Comput Eng Sci, 2000: 1475-1480.
|
[5] |
Liu M B, Liu C R, Zong Z, et al. Computer simulation of the high explosive explosion using smoothed particle hydrodynamics methodology[J]. Comput Fluids, 2003, 32(3): 305-322. http://www.sciencedirect.com/science/article/pii/S0045793001001050
|
[6] |
Vernon T A. Whipping response of ship hulls from underwater explosion bubble loading, AD-A178096[R]. Nova Scotia: Defence Research Establishment Atlantic Dartmouth, 1986.
|
[7] |
Zong Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble[J]. J Fluid Struct, 2005, 20(3): 359-372. doi: 10.1016/j.jfluidstructs.2004.08.003
|
[8] |
Zhang A M, Yang W S, Huang C, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination[J]. Comput Fluids, 2013, 71: 169-178. doi: 10.1016/j.compfluid.2012.10.012
|
[9] |
Fedkiw R P. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method[J]. J Comput Phys, 2002, 175(1): 200-224. http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1006/jcph.2001.6935&rfr_id=trans/tg/2009/03/ttg2009030493.htm
|
[10] |
Wang C W, Liu T G, Khoo B C. A real ghost fluid method for the simulation of multimedium compressible flow[J]. J Sci Comput, 2005, 28(1): 278-302. http://dl.acm.org/citation.cfm?id=1122832
|
[11] |
Wardlaw A B Jr. Underwater explosion test cases, IHTR-2069[R]. Maryland: Naval Surface Warfare Center Indian Head Division, 1998.
|
[12] |
Liu T G, Khoo B C, Xie W F. Isentropic one-fluid modelling of unsteady cavitating flow[J]. J Comput Phys, 2004, 201(1): 80-108. http://www.ams.org/mathscinet-getitem?mr=2098854
|
[13] |
Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. J Comput Phys, 1988, 79(1): 12-49. http://www.ams.org/mathscinet-getitem?mr=965860
|
[14] |
Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow[J]. J Comput Phys, 1994, 114(1): 146-159.
|
[15] |
Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. J Comput Phys, 2003, 190(2): 651-681. http://www.sciencedirect.com/science/article/pii/S0021999103003012
|
[16] |
Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods[J]. J Comput Phys, 1999, 148(1): 2-22. http://www.sciencedirect.com/science/article/pii/s0021999198960909
|
[17] |
Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report[R]. Rhode Island: Brown University, 1997.
|
[18] |
Jiang G S, Peng D. Weighted ENO schemes for Hamilton Jacobi equations[J]. SIAM J Sci Comput, 2000, 21(6): 2126-2143. doi: 10.1137/S106482759732455X
|
[19] |
Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. J Comput Phys, 1988, 77(2): 439-471.
|
[20] |
曹乐.利用Level set方法捕捉气、水界面的三维数值研究[D].合肥: 中国科学技术大学, 2009: 20-21.Cao L. Three-dimensional computations on capturing of gas-water interface by level set method[D]. Hefei: University of Science and Technology of China, 2009: 20-21. (in Chinese)
|