在直角坐标系用NGFM模拟复杂计算域水下高压气泡膨胀问题

史汝超 张亚军 徐胜利

史汝超, 张亚军, 徐胜利. 在直角坐标系用NGFM模拟复杂计算域水下高压气泡膨胀问题[J]. 高压物理学报, 2014, 28(6): 699-704. doi: 10.11858/gywlxb.2014.06.009
引用本文: 史汝超, 张亚军, 徐胜利. 在直角坐标系用NGFM模拟复杂计算域水下高压气泡膨胀问题[J]. 高压物理学报, 2014, 28(6): 699-704. doi: 10.11858/gywlxb.2014.06.009
SHI Ru-Chao, ZHANG Ya-Jun, XU Sheng-Li. Simulation of Expansion of High Pressure Bubble under Water in Complex Calculation Region using NGFM in Cartesian Coordinate System[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 699-704. doi: 10.11858/gywlxb.2014.06.009
Citation: SHI Ru-Chao, ZHANG Ya-Jun, XU Sheng-Li. Simulation of Expansion of High Pressure Bubble under Water in Complex Calculation Region using NGFM in Cartesian Coordinate System[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 699-704. doi: 10.11858/gywlxb.2014.06.009

在直角坐标系用NGFM模拟复杂计算域水下高压气泡膨胀问题

doi: 10.11858/gywlxb.2014.06.009
基金项目: 国家自然科学基金项目(10902110)
详细信息
    作者简介:

    史汝超(1982—), 男,博士,主要从事水下爆炸研究.E-mail:rcshi@mail.ustc.edu.cn

    通讯作者:

    徐胜利(1965—), 男,博士,教授,主要从事水下爆炸研究.E-mail:slxu@ustc.edu.cn

  • 中图分类号: O382.1

Simulation of Expansion of High Pressure Bubble under Water in Complex Calculation Region using NGFM in Cartesian Coordinate System

  • 摘要: 采用NGFM(New version of Ghost Fluid Method)处理复杂计算域的固壁边界,用RGFM(Real Ghost Fluid Method)求解气-水界面附近网格节点的状态参数,从而在直角坐标系下对复杂计算域的水下高压气泡膨胀问题进行数值模拟。流场控制方程选用Euler方程,用五阶WENO格式离散空间导数项,二阶Runge-Kutta法离散时间导数项;气-水界面追踪使用Level Set方法,对Level Set方程,用五阶HJ-WENO(Hamilton-Jacobi WENO)和三阶Runge-Kutta法求解。将计算结果与任意坐标系下的结果进行对比,验证了NGFM在笛卡尔网格中处理复杂形状固壁边界的可行性。得到了水下流场压力等值线图、高压气泡的演变过程以及特定点处的压力-时间曲线。计算结果表明,高压气泡在固壁反射激波的作用下,膨胀过程受到抑制;强激波在固壁的反射会导致固壁附近出现大范围的空化流动。

     

  • 图  RGFM中气-水界面附近节点赋值示意图(一维模型)

    Figure  1.  Updating the real and ghost nodes bordering the gas-liquid interface in RGFM (1D)

    图  NGFM中流-固界面附近节点赋值示意图(一维模型)

    Figure  2.  Updating the real and ghost nodes next to the liquid-solid interface in NGFM (1D)

    图  t=0.210 ms时,用NGFM处理固壁边界的数值解和理论解的比较

    Figure  3.  Comparison of results using NGFM to treat the wall boundary with the theoretical results at t=0.210 ms

    图  t=0.270 ms时,用NGFM处理固壁边界的数值解和理论解的比较

    Figure  4.  Comparison of the results using NGFM to treat the wall boundary with the theoretical results at t=0.270 ms

    图  计算域的尺寸和建模示意图

    Figure  5.  Schematics of the size and modeling of calculation domain

    图  激波传播和高压气泡变化过程(蓝色虚线表示高压气泡,红色虚线表示空化区域;Δp为相邻压力等值线间的压差)

    Figure  6.  Shock wave propagation and change process of high pressure bubble (Blue dashed line indicates high pressure bubble, red dashed line indicates cavitation region; Δp indicates the pressure difference between adjacent isolines)

    图  NGFM计算结果和任意坐标系下计算结果的比较

    Figure  7.  Comparison of the results using NGFM to treat wall boundary with the results in arbitrary coordinate system

  • [1] Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface[J]. J Fluid Mech, 1981, 111: 123-140. doi: 10.1017/S0022112081002322
    [2] Pearson A, Cox E, Blake J R, et al. Bubble interactions near a free surface[J]. Eng Anal Bound Elem, 2004, 28(4): 295-313. doi: 10.1016/S0955-7997(03)00079-1
    [3] Liu M B, Liu C R, Lam K Y. A one dimensional mesh free particle formulation for simulating shock waves[J]. Shock Waves, 2003, 13: 201-211. doi: 10.1007/s00193-003-0207-0
    [4] Liu M B, Liu C R, Zong Z, et al. Numerical simulation of underwater explosion by SPH[J]. Advan Comput Eng Sci, 2000: 1475-1480.
    [5] Liu M B, Liu C R, Zong Z, et al. Computer simulation of the high explosive explosion using smoothed particle hydrodynamics methodology[J]. Comput Fluids, 2003, 32(3): 305-322. http://www.sciencedirect.com/science/article/pii/S0045793001001050
    [6] Vernon T A. Whipping response of ship hulls from underwater explosion bubble loading, AD-A178096[R]. Nova Scotia: Defence Research Establishment Atlantic Dartmouth, 1986.
    [7] Zong Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble[J]. J Fluid Struct, 2005, 20(3): 359-372. doi: 10.1016/j.jfluidstructs.2004.08.003
    [8] Zhang A M, Yang W S, Huang C, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination[J]. Comput Fluids, 2013, 71: 169-178. doi: 10.1016/j.compfluid.2012.10.012
    [9] Fedkiw R P. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method[J]. J Comput Phys, 2002, 175(1): 200-224. http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1006/jcph.2001.6935&rfr_id=trans/tg/2009/03/ttg2009030493.htm
    [10] Wang C W, Liu T G, Khoo B C. A real ghost fluid method for the simulation of multimedium compressible flow[J]. J Sci Comput, 2005, 28(1): 278-302. http://dl.acm.org/citation.cfm?id=1122832
    [11] Wardlaw A B Jr. Underwater explosion test cases, IHTR-2069[R]. Maryland: Naval Surface Warfare Center Indian Head Division, 1998.
    [12] Liu T G, Khoo B C, Xie W F. Isentropic one-fluid modelling of unsteady cavitating flow[J]. J Comput Phys, 2004, 201(1): 80-108. http://www.ams.org/mathscinet-getitem?mr=2098854
    [13] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. J Comput Phys, 1988, 79(1): 12-49. http://www.ams.org/mathscinet-getitem?mr=965860
    [14] Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow[J]. J Comput Phys, 1994, 114(1): 146-159.
    [15] Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. J Comput Phys, 2003, 190(2): 651-681. http://www.sciencedirect.com/science/article/pii/S0021999103003012
    [16] Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods[J]. J Comput Phys, 1999, 148(1): 2-22. http://www.sciencedirect.com/science/article/pii/s0021999198960909
    [17] Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report[R]. Rhode Island: Brown University, 1997.
    [18] Jiang G S, Peng D. Weighted ENO schemes for Hamilton Jacobi equations[J]. SIAM J Sci Comput, 2000, 21(6): 2126-2143. doi: 10.1137/S106482759732455X
    [19] Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. J Comput Phys, 1988, 77(2): 439-471.
    [20] 曹乐.利用Level set方法捕捉气、水界面的三维数值研究[D].合肥: 中国科学技术大学, 2009: 20-21.

    Cao L. Three-dimensional computations on capturing of gas-water interface by level set method[D]. Hefei: University of Science and Technology of China, 2009: 20-21. (in Chinese)
  • 加载中
图(7)
计量
  • 文章访问数:  6769
  • HTML全文浏览量:  2324
  • PDF下载量:  255
出版历程
  • 收稿日期:  2013-01-28
  • 修回日期:  2013-04-26

目录

    /

    返回文章
    返回