MgO单晶冲击变形产生点缺陷吸收谱的实时测量

薛桃 周显明 李加波 曾小龙 叶素华 黄金 李俊 戴诚达

薛桃, 周显明, 李加波, 曾小龙, 叶素华, 黄金, 李俊, 戴诚达. MgO单晶冲击变形产生点缺陷吸收谱的实时测量[J]. 高压物理学报, 2014, 28(6): 691-698. doi: 10.11858/gywlxb.2014.06.008
引用本文: 薛桃, 周显明, 李加波, 曾小龙, 叶素华, 黄金, 李俊, 戴诚达. MgO单晶冲击变形产生点缺陷吸收谱的实时测量[J]. 高压物理学报, 2014, 28(6): 691-698. doi: 10.11858/gywlxb.2014.06.008
XUE Tao, ZHOU Xian-Ming, LI Jia-Bo, ZENG Xiao-Long, YE Su-Hua, HUANG Jin, LI Jun, DAI Cheng-Da. Real-Time Absorption Spectrum Measurements of Deformation-Induced Point Defects in Single Crystal MgO[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 691-698. doi: 10.11858/gywlxb.2014.06.008
Citation: XUE Tao, ZHOU Xian-Ming, LI Jia-Bo, ZENG Xiao-Long, YE Su-Hua, HUANG Jin, LI Jun, DAI Cheng-Da. Real-Time Absorption Spectrum Measurements of Deformation-Induced Point Defects in Single Crystal MgO[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 691-698. doi: 10.11858/gywlxb.2014.06.008

MgO单晶冲击变形产生点缺陷吸收谱的实时测量

doi: 10.11858/gywlxb.2014.06.008
基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(U1230202);冲击波物理与爆轰物理重点实验室基金(9140C670402120C6706)
详细信息
    作者简介:

    薛桃(1987—), 女, 硕士, 主要从事材料高压动态物性研究. E-mail:eden717@126.com

    通讯作者:

    周显明(1963—), 男,博士,研究员,主要从事冲击波物理研究.E-mail:xianming_zhou@caep.cn

  • 中图分类号: O521.22

Real-Time Absorption Spectrum Measurements of Deformation-Induced Point Defects in Single Crystal MgO

  • 摘要: 为研究冲击塑性变形产生的缺陷对MgO单晶透明性的影响,采用40通道(波长)纳秒时间分辨高温计和冲击波原位光源技术,对在一维应变冲击加载下MgO单晶的透射谱进行了实验测量。冲击波加载方向垂直于样品(100)晶面,测谱范围为400~800 nm,得到了2个压力点(约50 GPa和约70 GPa)的吸收系数随波长的变化曲线,从实测曲线发现了6个明显的特征吸收峰,其中心波长分别为410、460、490、520、580和660 nm。通过对比分析,确定出410、460、490和580 nm处的吸收峰为F聚心吸收,520 nm处的吸收峰为V-心吸收,而660 nm处的吸收峰则可能为与填隙原子相关的吸收。这是在冲击压缩条件下,首次实时观测到的MgO单晶样品冲击塑性变形产生的点缺陷色心吸收现象。

     

  • 图  〈100〉 MgO单晶在常温常压下的吸收谱

    Figure  1.  Absorption spectrum of 〈100〉 MgO at ambient condition

    图  气炮加载实验装置结构示意图

    Figure  2.  The experimental configuration under gas gun loading

    图  〈100〉 MgO单晶典型的辐亮度历史和表观速度剖面(p≈70 GPa, λ≈600 nm)

    Figure  3.  Typical radiance history and apparent velocity profile (〈100〉 MgO, p≈70 GPa, λ≈600 nm)

    图  〈100〉 MgO单晶的吸收率随时间和波长的变化

    (a) p≈70 GPa (b) p≈50 GPa

    Figure  4.  Absorbance as a function of time and wavelength (〈100〉 MgO)

    图  实验测得的吸收谱(〈100〉 MgO单晶)

    Figure  5.  Absorption spectrums measured in our experiments (〈100〉 MgO)

    图  扣除吸收本底基线后的特征吸收谱

    Figure  6.  Characteristic absorption spectrums with baselines subtracted

    表  1  相关材料参数

    Table  1.   Parameters of related materials used in this study

    Material ρ0/(g/cm3) C0/(mm/μs) λ γ cV/(J·g-1·K-1)
    Copper 8.935 3.933 1.500 2.0 -
    304SS 7.930 4.580 1.490 2.2 -
    CHBr3 2.870 1.500 1.380 1.0 0.516
    MgO 3.584 6.600 1.370 1.74 -
    下载: 导出CSV

    表  2  实验参数

    Table  2.   Experimental parameters

    Shot No. h1/h2 w/
    (km/s)
    CHBr3 MgO
    pH/(GPa) TH/(K) pH/(GPa) up/(km/s) D/(km/s)
    20121212 0.08/2.8 3.84(0.019) 45.7(0.4) 5830 70.3(0.5) 2.077(0.011) 9.446(0.016)
    20130108 0.08/3.0 3.04(0.015) 31.7(0.2) 3687 50.4(0.4) 1.601(0.009) 8.793(0.012)
    下载: 导出CSV
  • [1] Umemoto K, Wentzcovitch R M, Allen P B. Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets[J]. Science, 2006, 311(5763): 983-986. doi: 10.1126/science.1120865
    [2] McWilliams R S, Spaulding D K, Eggert J H, et al. Phase transformations and metallization of magnesium oxide at high pressure and temperature[J]. Science, 2012, 38(6112): 1330-1333. http://www.chemeurope.com/en/publications/495318/report-phase-transformations-and-metallization-of-magnesium-oxide-at-high-pressure-and-temperature.html
    [3] Stevens G D, Veeser L R, Rigg P A, et al. Suitability of magnesium oxide as a VISAR window[C]//Shock Compression of Condensed Matter-2005. Atlanta: American Institute of Physics, 2006: 1353-1356.
    [4] Liberman D A. Self-consistent field electronic structure calculations for compressed magnesium oxide[J]. J Phys Chem Solids, 1978, 39(3): 255-257. doi: 10.1016/0022-3697(78)90052-5
    [5] Bukowinski M S T. Effect of pressure on bonding in MgO[J]. J Geophys Res: Solid Earth, 1980, 85(B1): 285-292. doi: 10.1029/JB085iB01p00285
    [6] Chang K J, Cohen M L. High-pressure behavior of MgO: Structural and electronic properties[J]. Phys Rev B, 1984, 30(8): 4774-4781. doi: 10.1103/PhysRevB.30.4774
    [7] 房勇, 杨改蓉, 何林, 等.第一性原理计算分析冲击压缩下MgO电导率突降起因[J].西南大学学报(自然科学版), 2009, 31(9): 93-96. http://www.cqvip.com/QK/95549A/20099/31579918.html

    Fang Y, Yang G R, He L, et al. Analysis of the causes for abrupt drop of electronic conductivity of MgO under high pressure using first principle calculation[J]. Journal of Southwest University(Natural Science Edition), 2009, 31(9): 93-96. (in Chinese) http://www.cqvip.com/QK/95549A/20099/31579918.html
    [8] Bukowinski M S T, Hauser J. Pressure induced metallization of SrO and BaO: Theoretical estimate of transtion pressures[J]. Geophys Res Lett, 1980, 7(9): 689-692. doi: 10.1029/GL007i009p00689
    [9] Gaffney E S, Ahrens T J. Optical absorption spectra of ruby and periclase at high shock pressures[J]. J Geophyis Res, 1973, 78(26): 5942-5953. doi: 10.1029/JB078i026p05942
    [10] Schmitt D R, Ahrens T J. Emission spectra of shock compressed solids[C]//Asay J R, Graham R A, Struab G K. Shock Waves in Condensed Matter 1983. Amsterdam: Elsevier Science Publishers B V, 1984: 313-316.
    [11] Schmitt D R, Svendsen B, Ahrens T J. Shock induced radiation from minerals[C]//Gupta Y M. Shock Waves in Condensed Matter-1985. New York and London: Plenum Press, 1986: 261-265.
    [12] Svendsen B, Ahrens T J. Shock-induced temperatures of MgO[J]. Geophys J Int, 1987, 91(3): 667-691. doi: 10.1111/j.1365-246X.1987.tb01664.x
    [13] Gager W B, Klein M J, Jones W H. The generation of vacancies in MgO single crystals by explosive shock[J]. Appl Phys Lett, 1964, 5(7): 131-132. doi: 10.1063/1.1754084
    [14] Wang Q S, Holzwarth N A W. Electronic structure of vacancy defects in MgO crystals[J]. Phys Rev B, 1990, 41(5): 3211-3225. doi: 10.1103/PhysRevB.41.3211
    [15] Gibson A, Haydock R, Lapemina J P. Stability of vacancy defects in MgO: The role of charge neutrality[J]. Phys Rev B, 1994, 50(4): 2582-2592. doi: 10.1103/PhysRevB.50.2582
    [16] Meyers M A, Chawla K K. Mechanical Behavior of Materials[M]. 2nd ed. New York: Cambridge University Press, 2009: 259.
    [17] Klein M J, Gager W B. Generation of vacancies in MgO by deformation[J]. J Appl Phys, 1966, 37(11): 4112-4116. doi: 10.1063/1.1707984
    [18] Li J, Zhou X M, Li J B. A time-resolved single-pass technique for measuring optical absorption coefficients of window materials under 100 GPa shock pressures[J]. Rev Sci Instrum, 2008, 79(12): 123107. doi: 10.1063/1.3046279
    [19] Goto T, Ahrens T J, Rossman G R, et al. Absorption spectrum of shock-compressed Fe2+-bearing MgO and the radiative conductivity of the lower mantle[J]. Phys Earth Planet Inter, 1980, 22(3/4): 277-288.
    [20] McQueen R G, Hopson J W, Fritz J N. Optical technique for determining rarefaction wave velocities at very high pressures[J]. Rev Sci Instrum, 1982, 53(2): 245-250. doi: 10.1063/1.1136937
    [21] Gogulya M F. Temperatures of Shock Compression of Condensed Matter[M]. Moscow: MIFI, 1988: 3-10.
    [22] Weng J D, Tan H, Wang X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Appl Phys Lett, 2006, 89(11): 111101. doi: 10.1063/1.2335948
    [23] 操秀霞, 卢铁城, 周显明.冲击压缩下蓝宝石单晶散射消光的理论计算[J].原子与分子物理学报, 2011, 28(3): 485-493. http://www.cqvip.com/QK/91990X/201103/38270715.html

    Cao X X, Lu T C, Zhou X M. Optical scattering extinction in shocked sapphire by theoretical calculation[J]. Journal of Atomic and Molecular Physics, 2011, 28(3): 485-493. (in Chinese) http://www.cqvip.com/QK/91990X/201103/38270715.html
    [24] Monge M A, Popov A I, Ballesteros C, et al. Formation of anion-vacancy clusters and nanocavities in thermochemically reduced MgO single crystals[J]. Phys Rev B, 2000, 62(14): 9299-9304. doi: 10.1103/PhysRevB.62.9299
    [25] Gonzalez R, Vergara I, CaceresD, et al. Role of hydrogen and lithium impurities in radiation damage in neutron-irradiated MgO single crystals[J]. Phys Rev B, 2002, 65(22): 224108. doi: 10.1103/PhysRevB.65.224108
    [26] Caceres D, Vergara I, Gonzalez R, et al. Effect of neutron irradiation on hardening in MgO Crystals[J]. Phys Rev B, 2002, 66(2): 024111. doi: 10.1103/PhysRevB.66.024111
    [27] Kvatchadze V, Kalabegishvili T, Vylet V, et al. Ceramic MgO: LiF: promising material for selective detector[J]. Radiat Effect Defect Solid, 2006, 151(5): 305-311. doi: 10.1080/10420150600703767
    [28] Henderson B. Anion vacancy centers in alkaline earth oxides[J]. Critic Revn Solid State Mater Sci, 1980, 9(1): 1-60. doi: 10.1080/10408438008243569
    [29] Kappers L A, Kroes R L, Hensley E B. F+ and F' centers in magnesium oxide[J]. Phys Rev B, 1970, 1(10): 4151-4157. doi: 10.1103/PhysRevB.1.4151
    [30] Ueda A, Mu R, Tung Y S, et al. Optically measured diffusion constants of oxygen vacancies in MgO[J]. J Phys: Conden Matt, 2001, 13(23): 5535-5544. doi: 10.1088/0953-8984/13/23/313
    [31] Turner T J, Murphy C, Schultheiss T. A study of the effect of deformation on optical absorption of MgO single crystals[J]. Phys Stat Solid(b), 1973, 58(2): 843-857. doi: 10.1002/pssb.2220580247
    [32] Underhill P R, Gallon T E. The surface defect peak in the electron energy loss spectrum of MgO(100)[J]. Solid State Commun, 1982, 43(1): 9-11. http://www.sciencedirect.com/science/article/pii/0038109882911437
    [33] 刘健, 阮永丰, 马鹏飞, 等.中子辐照MgO晶体的损伤和恢复[J].人工晶体学报, 2005, 34(3): 496-499. http://d.wanfangdata.com.cn/Periodical/rgjtxb98200503025

    Liu J, Ruan Y F, Ma P F, et al. Radiation damage and recovery of neutron irradiated MgO crystal[J]. Journal of Synthetic Crystals, 2005, 34(3): 496-499. (in Chinese) http://d.wanfangdata.com.cn/Periodical/rgjtxb98200503025
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  6854
  • HTML全文浏览量:  2127
  • PDF下载量:  247
出版历程
  • 收稿日期:  2013-03-15
  • 修回日期:  2014-05-13

目录

    /

    返回文章
    返回