静电场中多孔PZT95/5铁电陶瓷的通道电-机械击穿模型及分析

蒋一萱 王省哲 贺红亮

蒋一萱, 王省哲, 贺红亮. 静电场中多孔PZT95/5铁电陶瓷的通道电-机械击穿模型及分析[J]. 高压物理学报, 2014, 28(6): 680-685. doi: 10.11858/gywlxb.2014.06.006
引用本文: 蒋一萱, 王省哲, 贺红亮. 静电场中多孔PZT95/5铁电陶瓷的通道电-机械击穿模型及分析[J]. 高压物理学报, 2014, 28(6): 680-685. doi: 10.11858/gywlxb.2014.06.006
JIANG Yi-Xuan, WANG Xing-Zhe, HE Hong-Liang. Channel Induced Electro-Mechanical Breakdown Model for Porous PZT95/5 Ceramics in Quasi-Static Electric Fields[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 680-685. doi: 10.11858/gywlxb.2014.06.006
Citation: JIANG Yi-Xuan, WANG Xing-Zhe, HE Hong-Liang. Channel Induced Electro-Mechanical Breakdown Model for Porous PZT95/5 Ceramics in Quasi-Static Electric Fields[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 680-685. doi: 10.11858/gywlxb.2014.06.006

静电场中多孔PZT95/5铁电陶瓷的通道电-机械击穿模型及分析

doi: 10.11858/gywlxb.2014.06.006
基金项目: 中国工程物理研究院科学技术发展基金(2010A0201005);中央高校基本科研业务费专项资金(lzujbky-2010-17)
详细信息
    作者简介:

    蒋一萱(1980—), 女,硕士,讲师,主要从事冲击波加载下铁电陶瓷力学特性研究.E-mail:jyix@lzu.edu.cn

    通讯作者:

    王省哲(1972—), 男,博士,教授,主要从事电磁固体力学研究.E-mail:xzwang@lzu.edu.cn

  • 中图分类号: O521.23

Channel Induced Electro-Mechanical Breakdown Model for Porous PZT95/5 Ceramics in Quasi-Static Electric Fields

  • 摘要: 作为爆电电源的多孔PZT95/5铁电陶瓷具有极为重要的工程应用背景,但它在强电场作用下易发生电击穿失效,从而影响其放电效率,甚至造成电源失效。基于多孔PZT95/5铁电陶瓷材料在外电场作用下内部形成导电通道以致电失效的机制,通过通道内部局部放电及通道电-机械击穿机理,建立了导电通道诱导的多孔铁电陶瓷的电击穿模型并进行了相关的理论分析。基于本模型, 给出了不同孔隙率下铁电陶瓷的电击穿临界电场强度,预测结果与实验测试结果吻合良好, 且材料孔隙率越大,内部电击穿通道的特征尺寸越大,导致铁电陶瓷材料的电击穿临界场强显著降低。

     

  • 图  PZT95/5陶瓷电击穿场强随孔隙率的变化曲线

    Figure  1.  Dielectric breakdown strength of PZT95/5 ceramics as a function of porosity

    图  PZT95/5陶瓷电击穿场强随通道特征尺寸的变化曲线

    Figure  2.  Dielectric breakdown strength of PZT95/5 ceramics as a function of path feature size

    表  1  不同孔隙率及不同造孔剂的PZT95/5铁电陶瓷材料的击穿临界电场强度

    Table  1.   Dielectric breakdown strength of PZT95/5 ceramics with different porosities and pore formers

    Material[17] Porosity/
    (%)
    Relative dielectric
    constant
    Young's
    modulus/(GPa)
    Path
    size/(μm)
    Predicted breakdown
    strength/(kV/m)
    Experimental breakdown
    strength/(kV/m)
    Dense material
    by hot-press
    method
    0.4 314 148 1.00 16 500 15 000
    Dense 4.1 309 148 5.00 7 460 6 800
    PMMA
    (Spherical shape)
    7.2 281 136 6.00 7 140 -
    11.2 252 121 7.00 6 980 -
    13.5 241 112 8.00 6 680 6 600
    Dextrin
    (Irregular pores)
    8.9 249 121 7.50 6 790 6 650
    10.7 236 112 8.00 6 750 6 550
    下载: 导出CSV
  • [1] Setchell R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Microstructural effects[J]. J Appl Phys, 2007, 101(5): 053525. doi: 10.1063/1.2697428
    [2] 刘高旻, 张毅, 杜金梅, 等. PZT95/5-2Nb铁电陶瓷脉冲换能电输出[J].功能材料与器件学报, 2007, 13(4): 371-374. http://www.cnki.com.cn/Article/CJFDTotal-GNCQ200704012.htm

    Liu G M, Zhang Y, Du J M, et al. Electrical output of PZT95/5-2Nb pulsed power supply[J]. Journal of Functional Materials and Devices, 2007, 13(4): 371-374. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GNCQ200704012.htm
    [3] 陈学峰, 刘雨生, 冯宁博, 等.冲击压力和温度老化对PZT95/5铁电陶瓷放电的影响[J].电子元件与材料, 2009, 28(7): 1-4. http://d.wanfangdata.com.cn/Periodical/dzyjycl200907001

    Chen X F, Liu Y S, Feng N B, et al. Effects of shock pressure and temperature aging on the discharge behavior of PZT95/5 ferroelectric ceramics[J]. Electronic Components and Materials, 2009, 28(7): 1-4. (in Chinese) http://d.wanfangdata.com.cn/Periodical/dzyjycl200907001
    [4] Storz L J, Dungan R H. A study of the electrical, mechanical, and microstructural properties of 95/5 PZT as a function of pore former type and concentration, SAND 85-1612[R]. USA: Sandia National Laboratories, 1986.
    [5] Tuttle B A, Yang P, Gieske J H, et al. Pressure-induced phase transformation of controlled-porosity Pb(Zr0.95Ti0.05)O3 ceramics[J]. J Am Ceram Soc, 2001, 84(6): 1260-1264. doi: 10.1111/j.1151-2916.2001.tb00826.x/full
    [6] Yang H, Dong X L, Zhong N, et al. Dielectric breakdown properties of Zr-rich lead zirconate titanate ceramics[J]. Jpn J Appl Phys, 2004, 43(11A): 7579-7582. doi: 10.1143/JJAP.43.7579
    [7] 曾涛, 董显林, 毛朝梁, 等.孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究[J].物理学报, 2006, 55(6): 3073-3079. http://www.cnki.com.cn/Article/CJFDTotal-WLXB200606072.htm

    Zeng T, Dong X L, Mao C L, et al. Effects of porosity and grain sizes on the dielectric and piezoelectric properties of porous PZT ceramics and their mechanism[J]. Acta Physica Sinica, 2006, 55(6): 3073-3079. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-WLXB200606072.htm
    [8] Zeng T, Dong X L, Mao C L, et al. Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics[J]. J Eur Ceram Soc, 2007, 27(4): 2025-2029. doi: 10.1016/j.jeurceramsoc.2006.05.102
    [9] Nie H C, Feng N B, Chen X F, et al. Enhanced ferroelectric properties of intragranular-porous Pb(Zr0.95Ti0.05)O3 ceramic fabricated with carbon nanotubes[J]. J Am Ceram Soc, 2010, 93(3): 642-645. doi: 10.1111/j.1551-2916.2009.03479.x
    [10] Setchell R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Depoling currents[J]. J Appl Phys, 2005, 97(1): 013507. doi: 10.1063/1.1828215
    [11] Feng N B, Nie H C, Chen X F, et al. Depoling of porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load[J]. Current Appl Phys, 2010, 10(6): 1387-1390. doi: 10.1016/j.cap.2010.04.012
    [12] Sindeyev Y G, Yurkevich V E. Electrical breakdown in ferroelectric ceramics(a review)[J]. Ferroelelectrics, 1990, 110: 193-218. doi: 10.1080/00150199008008916
    [13] Zhou Y X, Yoshimura N. Short-time DC breakdown phenomena in BaTiO3-based multilayer ceramic capacitors[J]. Jpn J Appl Phys, 1999, 38: 1412-1417. doi: 10.1143/JJAP.38.1412
    [14] Shin B C, Kim S C, Nahm C W, et al. Nondestructive testing of ceramic capacitors by partial discharge method[J]. Mater Lett, 2001, 50(2): 82-86. http://www.sciencedirect.com/science/article/pii/S0167577X00004201
    [15] 杨洪.高抗电强度PZT95/5型铁电陶瓷的研制及击穿机理的研究[D].上海: 上海硅酸盐研究所, 2006: 50-78.

    Yang H. Fabrication and breakdown mechanism research of PZT95/5 ceramics with high dielectric breakdown properties[D]. Shanghai: Shanghai institute of ceramics, 2006: 50-78. (in Chinese)
    [16] Geis S, Fricke J, Löbmann P. Electrical properties of PZT aerogels[J]. J Euro Ceram Soc, 2002, 22(7): 1155-1161. doi: 10.1016/S0955-2219(01)00426-5
    [17] 曾涛.多孔PZT压电和铁电陶瓷的制备与性能研究[D].上海: 上海硅酸盐研究所, 2007: 65-83.

    Zeng T. Fabrication and properties of porous PZT based piezoelectric and ferroelectric ceramics[D]. Shanghai: Shanghai Institute of Ceramics, 2007: 65-83. (in Chinese)
    [18] Gerson R, Marshall T C. Dielectric breakdown of porous ceramics[J]. J Appl Phys, 1959, 30(11): 1650-1653. doi: 10.1063/1.1735030
    [19] 冯宁博, 贺红亮, 董显林.高应变率加载下材料的损伤破碎规律[J].高能量密度物理, 2007, (4): 152-164. http://www.cqvip.com/QK/97600A/20074/26215254.html

    Feng N B, He H L, Dong X L. Damage and broken laws of materials in the high strain rate loading[J]. High Energy Density Physics, 2007, (4): 152-164. (in Chinese) http://www.cqvip.com/QK/97600A/20074/26215254.html
    [20] 张福平, 杜金梅, 刘雨生, 等. PZT95/5陶瓷电致失效机理研究[J].物理学报, 2011, 60(5): 057701. http://www.cqvip.com/QK/94684X/20115/37798769.html

    Zhang F P, Du J M, Liu Y S, et al. Failure mechanism of PZT95/5 under direct current and pulsed electric field[J]. Acta Phys Sinica, 2011, 60(5): 057701. (in Chinese) http://www.cqvip.com/QK/94684X/20115/37798769.html
    [21] Coelho R, Aladenize B.电介质材料及其介电性能[M].张治文, 译.北京: 科学出版社, 2000: 162-192.

    Coelho R, Aladenize B. The Dielectric Material and Its Dielectric Properties[M]. Translated by Zhang Z W. Beijing: Science Press, 2000: 162-192. (in Chinese)
    [22] Crichton G C, Karlsson P W, Pedersen A. Partial discharges in ellipsoidal and spheroidal voids[J]. IEEE Trans Electr Insul, 1989, 24(2): 335-342. doi: 10.1109/14.90292
    [23] Mcallister I W, Crichton G C. Influence of bulk dielectric polarization upon partial discharge transients effect of heterogeneous dielectric geometry[J]. IEEE T Dielect El In, 2000, 7(1): 124-132. doi: 10.1109/94.839350
    [24] Pedersen A, Crichton G C, Mcallister I W. The theory and measurement of partial discharge transients[J]. IEEE Trans Electr Insul, 1991, 26(3): 487-497. doi: 10.1109/14.85121
    [25] Stark K H, Garton C G. Electric strength of irradiated polythene[J]. Nature, 1955, 176(4495): 1225-1226. doi: 10.1038/1761225a0
    [26] Fothergill J C. Filamentary electromechanical breakdown[J]. IEEE Trans Electr Insul, 1991, 26(6): 1124-1129. doi: 10.1109/14.108149
    [27] Schneider G A. Influence of electric field and mechanical stresses on the fracture of ferroelectrics[J]. Annu Rev Mater Res, 2007, 37: 491-538. doi: 10.1146/annurev.matsci.37.052506.084213
    [28] Banno H. Effects of shape and volume fraction of closed pores on dielectric elastic and electromechanical properties of dielectric and piezoelectric ceramics: A theoretical approach[J]. Am Ceram Soc Bull, 1987, 66(9): 1332-1337. http://www.researchgate.net/publication/279589309_Effects_of_Shape_and_Volume_Fraction_of_Closed_Pores_on_Dielectric_Elastic_and_Electromechanical_Properties_of_Dielectric_and_Piezoelectric_CeramicsA_Theoretical_Approach
    [29] Phani K K, Niyogi S K. Young's modulus of porous brittle solids[J]. J Mater Sci, 1987, 22: 257-263. doi: 10.1007/BF01160581
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  6423
  • HTML全文浏览量:  1886
  • PDF下载量:  329
出版历程
  • 收稿日期:  2012-06-25
  • 修回日期:  2012-09-09

目录

    /

    返回文章
    返回