Detonation Characteristics of RDX-Liquid Fuel-Air Three-Phase System
-
摘要: 在内径为0.2 m、高5.4 m的大型立式激波管内,同时对液体燃料和黑索金(RDX)粉末进行抛撒,采用底部直接起爆,得到了RDX-液体燃料-空气三相体系的爆压和爆速,利用烟熏技术得到了爆轰波的胞格结构、尺寸及长宽比。结果表明:90#溶剂油-空气两相体系的平均爆压为5~6 MPa,可以将其作为燃料-空气炸药的主燃料;向该燃料中添加硝酸异丙酯(IPN)可以降低其临界起爆能,添加RDX能够提高体系的爆速和爆压。此外,通过理论分析结合实验验证得出,多相爆轰的临界起爆能和爆轰胞格尺寸之间存在与气相爆轰类似的关系。Abstract: Liquid fuel and RDX dust were dispersed at the same time in a detonation tube with an inner diameter of 200 mm and length of 5.4 m, and the cloud formed was initiated by high explosive from the bottom.Detonation pressure and velocity were obtained by the pressure measurement system, and photos and detonation cell were got by smoke trace technology.The results indicate that the 90# solvent oil-air cloud detonation pressure is 5-6 MPa, which means the 90# solvent oil can be used as a main fuel of fuel-air explosive.By adding isopropyl nitrate (IPN), its critical initiation energy can be lowered, and by adding RDX the detonation pressure and velocity can be raised.The calculation and experimental verification also found a link between the critical initiation energy and detonation cell size of multi-phase detonation which is similar with the gaseous detonation.
-
表 1 传感器位置和量程
Table 1. Position and range of pressure sensors
No. Distance from the
detonation point/
(m)Maximum
pressure/
(MPa)S2 1.4 15.330 S3 1.9 15.270 S4 2.4 6.784 S5 2.9 6.757 S6 3.4 6.220 S7 3.9 6.000 表 2 90#溶剂油和IPN的理化性质
Table 2. Physicochemical properties of 90# solvent oil and IPN
Liquid
fuelDensity/
(g/cm3)Composition Boiling
point/
(℃)Flash
point/
(℃)Ignition
temperature/
(℃)Upper
explosive
limit/(%)Lower
explosive
limit/(%)90# solvents oil 0.65 C5H12, C6H14 35-60 13 228 5.9 1.1 IPN 1.04 C3H7NO3 98-102 11 - 100 2 表 3 临界起爆能实验值与理论值的比较
Table 3. Comparison between experimental and theoretical value of critical initiation energy
Constituents ρ0/
(kg/m3)vCJ/
(m/s)λ/
(mm)Theoretical
Ec/(kJ)Experimental
Ec/(kJ)RDX-90# solvent oil-air 1.633 2 1 794 24.6 14.279 14.735 RDX-mixed fuel-air 1.659 5 1 808 19.1 6.893 5.945 -
[1] 姜宗林, 滕宏辉, 刘云峰.气相爆轰物理的若干研究进展[J].力学进展, 2012, 42(2): 129-140. http://d.wanfangdata.com.cn/Periodical/lxjz201202002Jiang Z L, Teng H H, Liu Y F. Some research progress on gaseous detonation physics[J]. Advances in Mechanics, 2012, 42(2): 129-140. (in Chinese) http://d.wanfangdata.com.cn/Periodical/lxjz201202002 [2] Lee J H S. Dynamic parameters of gaseous detonations[J]. Annu Rev Fluid Mech, 1984, 16: 311-336. doi: 10.1146/annurev.fl.16.010184.001523 [3] Eaton R, Zhang B, Bergthorson J M, et al. Measurement and chemical kinetic model predictions of detonation cell size in methanol-oxygen mixtures[J]. Shock Waves, 2012, 22: 173-178. doi: 10.1007/s00193-012-0359-x [4] 王昌建, 徐胜利, 郭长铭.气相爆轰波在半圆形弯管中传播现象的实验研究[J].爆炸与冲击, 2003, 23(5): 448-453. http://www.cqvip.com/Main/Detail.aspx?id=8384401Wang C J, Xu S L, Guo C M. Experimental investigation on gaseous detonation propagation in a semi-circle bend tube[J]. Explosion and Shock Waves, 2003, 23(5): 448-453. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=8384401 [5] 王昌建, 郭长铭, 徐胜利, 等.气相爆轰在T形管中传播现象的实验研究[J].力学学报, 2004, 36(1): 16-23. http://www.cqvip.com/Main/Detail.aspx?id=9081118Wang C J, Guo C M, Xu S L, et al. Experimental investigation on gaseous detonation propagation through a T-shape bifurcated tube[J]. Acta Mechanica Sinica, 2004, 36(1): 16-23. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=9081118 [6] 刘光烈.多相爆轰试验管结构设计及试验验证[J].含能材料, 1997, 5(1): 36-38.Liu G L. Design of multiphase detonation tube and its experimental verification[J]. Energetic Materials, 1997, 5(1): 35-38. (in Chinese) [7] 刘庆明, 白春华, 李建平.多相燃料空气炸药爆炸压力场研究[J].实验力学, 2008, 23(4): 360-370.Liu Q M, Bai C H, Li J P. Study on blast field characteristics of multiphase fuel air explosive[J]. Journal of Experimental Mechanics, 2008, 23(4): 360-370. (in Chinese) [8] 汤明钧.多相爆轰与生产安全[J].力学与实践, 1985, 7(5): 62-63. http://www.cnki.com.cn/Article/CJFDTotal-LXYS198505017.htmTang M J. Multiphase detonation and production safety[J]. Mechanics in Engineering, 1985, 7(5): 62-63. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-LXYS198505017.htm [9] 贵大勇, 刘吉平, 冯顺山.几种典型燃料空气炸药威力性能研究[J].含能材料, 2002, 10(3): 121-124. http://www.cqvip.com/QK/90247X/20023/6819445.htmlGui D Y, Liu J P, Feng S S. Research of power performace of several typical fuel-air explosives[J]. Energetic Materials, 2002, 10(3): 121-124. (in Chinese) http://www.cqvip.com/QK/90247X/20023/6819445.html [10] 徐晓峰.碳氢燃料爆轰特性的研究[D].南京: 南京理工大学, 2003.Xu X F. Detonation properties of several hydrocarbon fuels[D]. Nanjing: Nanjing University of Science and Technology, 2003. (in Chinese) [11] 姚干兵, 解立峰, 刘家骢.立式激波管内云雾爆轰胞格尺寸的测定与分析[J].爆炸与冲击, 2007, 27(4): 312-318.Yao G B, Xie L F, Liu J C. Measurement and analysis of the cell size caused by fuel-air detonation in a vertical shock tube[J]. Explosion and Shock Waves, 2007, 27(4): 312-318. (in Chinese) [12] 陈默, 白春华, 刘庆明.大型水平管道中环氧丙烷-铝粉-空气混和物爆燃转爆轰的实验研究[J].高压物理学报, 2011, 25(4): 359-364. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201104013Chen M, Bai C H, Liu Q M. Experimental research of deflagration to detonation transition of epoxypropane-aluminum-air mixtures in large-scale tube[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 359-364. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201104013 [13] 张博, 白春华.气相爆轰动力学[M].北京: 科学出版社, 2012.Zhang B, Bai C H. Gaseous Detonation Mechanics[M]. Beijing: Science Press, 2012. (in Chinese) [14] Lee J H S. Initiation of gaseous detonation[J]. Annu Rev Phys Chem, 1977, 28(1): 75-104. [15] Lee J H S, Knystautas R, Guirao C. The link between cell size, critical tube diameter, initiation energy and detonability limits[C]//Fuel-Air Explosions. Waterloo: University of Waterloo Press, 1982: 157-187. [16] 刘世杰, 林志勇, 孙明波, 等.采用不同化学反应源项处理方法的胞格爆轰数值研究[J].国防科技大学学报, 2010, 32(5): 1-6.Liu S J, Lin Z Y, Sun M B, et al. Numerical Simulation of cellular detonation using different chemical reaction source term methods[J]. Journal of National University of Defense Technology, 2010, 32(5): 1-6. (in Chinese)