Characteristic Analysis of Acoustic Emission Signals Caused by Debris Cloud Impact
-
摘要: 为了掌握带防护屏的航天器结构受空间碎片超高速撞击时的声发射信号特征,利用二级轻气炮发射球形弹丸撞击铝合金双层板结构,获取了碎片云撞击铝合金板舱壁产生的声发射信号,并利用小波包技术和能量熵理论对信号进行了分析。实验结果表明:弹丸初始速度、防护屏厚度及弹丸直径是决定二次碎片云形态及声发射信号特征的重要因素;在本实验工况范围内,小波包能量熵值能够描述声发射信号频率的复杂程度;当弹丸初始速度处于破碎段(3~7 km/s)时,随着初始速度的增大,二次碎片云进一步细化,撞击产生的声发射信号幅值趋于减小、频率成分趋于复杂化,其小波包能量熵值逐渐增大;防护屏厚度对声发射信号的小波包能量熵值影响较大,弹丸直径对其影响较小。研究结果有助于实现对碎片云撞击舱壁结构的损伤模式识别。Abstract: In order to understand the characteristics of acoustic emission signals caused by hypervelocity space debris impacting spacecraft with shields, a two-stage light gas gun was used to launch sphere projectiles to impact an aluminum-alloy Whipple shield, the induced acoustic emission signals were acquired, and analyzed by wavelet packet technology and energy entropy theory.The experimental results indicate that, the initial velocity of projectile, bumper thickness and projectile diameter are important factors to decide the form of debris cloud and characteristics of acoustic emission signals.The wavelet packet energy entropy could be used to describe the frequency complexity of debris cloud impact signals.When the initial velocity of projectile increases in the broken section (3-7 km/s), along with which the projectile breaks more completely and the energy entropy of acoustic emission signals increases.Under the experimental conditions, the bumper thickness has greater influence on energy entropy values than the projectile diameter.The wavelet packet energy entropy is helpful to estimate the initial velocity of projectile and the maximum impact damage region, combined with the predicted curve from the Christiansen ballistic limit equation, the damage pattern recognition of the bulkhead could be assessed.
-
Key words:
- debris cloud /
- hypervelocity impact /
- acoustic emission /
- wavelet packet energy entropy
-
表 1 实验工况及结果
Table 1. Experimental conditions and results
No. dp/
(mm)tb/
(mm)v/
(km/s)Dmax/
(mm)Damage of
the rear wall1 3.20 0.5 2.78 110 P 2 3.20 0.5 3.25 120 P 3 3.20 0.5 3.52 129 P 4 3.20 0.5 4.24 142 P 5 3.20 0.5 4.63 150 P 6 3.20 0.5 4.92 158 P 7 3.20 1.0 2.50 102 NP 8 3.20 1.0 3.05 126 P 9 3.20 1.0 3.65 133 NP 10 3.20 1.0 4.00 152 NP 11 3.20 1.0 4.45 159 NP 12 3.20 1.0 5.05 165 NP 13 3.20 1.5 2.81 120 NP 14 3.20 1.5 3.05 130 NP 15 3.20 1.5 3.73 148 NP 16 3.20 1.5 4.21 160 NP 17 3.20 1.5 4.46 165 NP 18 3.20 1.5 4.81 170 NP 19 3.97 1.0 2.65 120 P 20 3.97 1.0 3.25 138 P 21 3.97 1.0 3.57 148 P 22 3.97 1.0 4.15 160 NP 23 3.97 1.0 4.55 170 NP 24 3.97 1.0 4.85 180 NP 25 4.76 1.0 2.31 110 P 26 4.76 1.0 3.01 140 P 27 4.76 1.0 3.30 145 P 28 4.76 1.0 3.75 160 P 29 4.76 1.0 4.64 180 P 30 4.76 1.0 5.20 195 P Note: P-Penetration in the rear wall, NP-No perforated point in the rear wall. -
[1] Miyachi T, Hasebe N, Ito H, et al. Real-time detector for hypervelocity microparticles using piezoelectric material[J]. Adv Space Res, 2004, 34(5): 935-938. doi: 10.1016/j.asr.2003.11.019 [2] Schäfer F, Janovsky R. Impact sensor network for detection of hypervelocity impacts on spacecraft[J]. Acta Astronaut, 2007, 61(10): 901-911. doi: 10.1016/j.actaastro.2007.02.002 [3] Prosser W H, Gorman M R, Humes D H. Acoustic emission signals in thin plates produced by impact damage[J]. J Acoust Emiss, 1999, 17(1/2): 29-36. [4] 唐颀, 庞宝君, 韩增尧, 等.单层板超高速撞击声发射波的频谱特征分析[J].宇航学报, 2007, 28(4): 1059-1064.Tang Q, Pang B J, Han Z Y, et al. Analysis of frequency spectrum character of acoustic emission wave from hypervelocity impact on single-sheet plate[J]. Journal of Astronautics, 2007, 28(4): 1059-1064. (in Chinese) [5] 刘武刚, 庞宝君, 韩增尧, 等.基于声发射的单层铝板高速撞击损伤类型识别[J].宇航学报, 2011, 32(3): 671-675.Liu W G, Pang B J, Han Z Y, et al. Damage identification of single aluminum plate produced by hypervelocity impact based acoustic emission[J]. Journal of Astronautics, 2011, 32(3): 671-675. (in Chinese) [6] 管永红, 胡八一, 黄超.基于小波包的爆炸容器振动分析[J].爆炸与冲击, 2010, 30(5): 551-555.Guan Y H, Hu B Y, Huang C. Vibration analysis of an explosion vessel based on wavelet packet transform[J]. Explosion and Shock Waves, 2010, 30(5): 551-555. (in Chinese) [7] 凌同华, 廖艳程, 张胜.冲击荷载下岩石声发射信号能量特征的小波包分析[J].振动与冲击, 2010, 29(10): 127-130, 255.Ling T H, Liao Y C, Zhang S. Application of wavelet packet method in frequency band energy distribution of rock acoustic emission signals under impact loading[J]. Journal of Vibration and Shock, 2010, 29(10): 127-130, 255. (in Chinese) [8] 管公顺, 庞宝君, 哈跃, 等.铝合金Whipple防护结构高速撞击实验研究[J].爆炸与冲击, 2005, 25(5): 461-466.Guan G G, Pang B J, Ha Y, et al. Experimental investigation of high-velocity impact on aluminum alloy Whipple shield[J]. Explosion and Shock Waves, 2005, 25(5): 461-466. (in Chinese) [9] Christiansen E L. Design and performance equations for advanced meteoroid and debris shields[J]. Int J Impact Eng, 1993, 14(1): 145-156. [10] 唐颀.超高速撞击板波特性与声发射空间碎片在轨感知技术[D].哈尔滨: 哈尔滨工业大学, 2008: 56-76.Tang Q. Characteristics of plate waves induced by hypervelocity impact and onboard monitoring technique for detection of impact on spacecraft by space debris[D]. Harbin: Harbin Institute of Technology, 2008: 56-76. (in Chinese) [11] Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy: A new tool for analysis of short duration brain electrical signals[J]. J Neurosci Meth, 2001, 105(1): 65-75. doi: 10.1016/S0165-0270(00)00356-3 [12] 印欣运, 何永勇, 彭志科, 等.小波熵及其在状态趋势分析中的应用[J].振动工程学报, 2004, 17(2): 49-53.Yin X Y, He Y Y, Peng Z K, et al. Study on wavelet entropy and its applications in trend analysis[J]. Journal of Vibration Engineering, 2004, 17(2): 49-53. (in Chinese)