弹丸爆炸驱动过程中层裂控制的研究

胡秋实 赵锋

胡秋实, 赵锋. 弹丸爆炸驱动过程中层裂控制的研究[J]. 高压物理学报, 2014, 28(6): 655-663. doi: 10.11858/gywlxb.2014.06.003
引用本文: 胡秋实, 赵锋. 弹丸爆炸驱动过程中层裂控制的研究[J]. 高压物理学报, 2014, 28(6): 655-663. doi: 10.11858/gywlxb.2014.06.003
HU Qiu-Shi, ZHAO Feng. Spall Control in the Projectile Explosive Driving[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 655-663. doi: 10.11858/gywlxb.2014.06.003
Citation: HU Qiu-Shi, ZHAO Feng. Spall Control in the Projectile Explosive Driving[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 655-663. doi: 10.11858/gywlxb.2014.06.003

弹丸爆炸驱动过程中层裂控制的研究

doi: 10.11858/gywlxb.2014.06.003
基金项目: 中国工程物理研究院科学技术发展基金重点项目(2009A0201008)
详细信息
    作者简介:

    胡秋实(1984—), 男,博士研究生,主要从事爆炸动力学的研究.E-mail:qiushihu@126.com

  • 中图分类号: O521.3;V416.8

Spall Control in the Projectile Explosive Driving

  • 摘要: 在弹丸爆炸驱动过程中,对厚度大于一定尺寸的弹丸,为降低弹丸内部负压以避免其层裂,通常对弹丸前端进行封装。研究发现,在爆炸产生的加载脉冲下,封装后的弹丸可能产生两次负压。一次负压的产生仅与选择的封装材料有关,二次负压的产生同时还与封装材料的厚度有关。通过理论推导得到了在给定弹丸材料和封装材料的情况下,为使弹丸不产生一次负压,加载冲击波和卸载稀疏波波后压力应满足的临界条件;同时导出了一次负压为零时,在弹丸不产生二次负压的条件下,封装材料厚度的临界值。采用AUTODYN有限元软件,对钢、铝弹丸封装材料不同的情况进行数值模拟,验证理论解的正确性;另外还对比研究了三角形冲击波加载的情况。研究结果可为弹丸爆炸驱动过程中封装材料的设计提供参考。

     

  • 图  钢层裂破坏照片[8]

    Figure  1.  Steel spall damage photo[8]

    图  弹丸内部波系图

    Figure  2.  Wave system diagram in the projectile

    图  不同封装材料下钢、铝弹丸不产生一次负压的临界条件曲线

    Figure  3.  Critical condition curve of not producing the first negative pressure for the Fe, Al projectile with different package materials

    图  加载冲击波压力为40 GPa时封装材料临界厚度与弹丸长度的关系曲线

    Figure  4.  Relationship curves between critical thickness of package materials and projectile length when the load pressure is 40 GPa

    图  弹丸长度为5 mm时封装材料临界厚度与加载冲击波压力的关系曲线

    Figure  5.  Relationship curves between critical thickness of package materials and load pressure when the projectile length is 5 mm

    图  (a) 弹丸尾部加载脉冲(b)计算模型

    Figure  6.  (a) Load pulse at the rear of the projectile (b) The calculation model

    图  不同卸载稀疏波波后压力下,封装材料为聚胺酯的钢、铝弹丸G1处的压力-时间曲线

    Figure  7.  Pressure-time histories of Fe, Al projectile with polyurethane package under different unload pressures at G1

    图  封装材料聚胺酯厚度不同情况下,钢、铝弹丸G2处的压力-时间曲线

    Figure  8.  Pressure-time histories of Fe, Al projectile with different PU package thicknesses at G2

    图  9(a)  矩形和三角形冲击波

    Figure  9(a).  Rectangular and triangular shock waves

    图  9(b)  钢、铝弹丸在两种冲击波下pb值对比

    Figure  9(b).  Unloaded pressure under two kinds of shock waves for the Fe, Al projectiles

    图  10  两种冲击波作用下封装材料临界厚度与加载压力的关系

    Figure  10.  Relationship curves between critical thickness of package materials and load pressure of two kinds of shock waves

    表  1  钢、铝弹丸和封装材料的Grüneisen状态方程参数

    Table  1.   Parameters of Grüneisen state equation of Fe, Al projectiles and package materials

    Material ρ/(kg/m3) c/(m/s) λ Γ
    Steel 8 129 3 980 1.580 1.60
    Aluminum 2 710 5 380 1.337 2.10
    Polyurethane 1 265 2 486 1.577 1.55
    Polycarbonate 1 200 1 933 2.650 0.61
    Epoxy resin 1 186 2 730 1.493 1.13
    Rubber polymer 1 010 852 1.865 1.50
    Water 998 1 647 1.921 0
    下载: 导出CSV

    表  2  理论解与数值模拟给出的卸载稀疏波波后压力最小值对比

    Table  2.   Contrast of unload pressure minimum given by theoretical solution and simulation (GPa)

    pa pb of steel projetile pb of Al projetile
    Polyurethane Rubber polymer Polyurethane Rubber polymer
    Theo. Simu. Theo. Simu. Theo. Simu. Theo. Simu.
    20 14.3 14.9 16.6 16.8 8.0 8.3 11.0 11.4
    40 25.9 27.5 30.1 31.2 12.3 13.2 16.5 17.7
    60 35.9 37.8 41.7 44.0 15.3 16.9 20.2 22.3
    下载: 导出CSV

    表  3  (7) 式与数值模拟给出的封装材料临界厚度的对比

    Table  3.   Contrast of package material critical thickness given by equation (7) and simulation

    Package material H0 of steel projetile/(mm) H0 of Al projetile/(mm)
    Equation (7) Numerical simulation Equation (7) Numerical simulation
    Polyurethane 2.42 2.25 2.54 2.75
    Rubber polymer 1.62 1.80 1.94 2.15
    下载: 导出CSV
  • [1] Chhabildas L C, Dunn J E, Reinhart W D, et al. An impact technique to accelerate flier plates to velocities over 12 km/s[J]. Int J Impact Eng, 1993, 14(1): 121-132. http://www.sciencedirect.com/science/article/pii/0734743X9390014X
    [2] Walker J D, Grosch D J, Mullin S A. Experimental impacts above 10 km/s[J]. Int J Impact Eng, 1995, 17(4): 903-914. http://www.sciencedirect.com/science/article/pii/0734743X9599909B
    [3] Chhabildas L C, Kmetyk L N, Reinhart W D, et al. Launch enhanced hypervelocity launcher capabilities to over 16 km/s[J]. Int J Impact Eng, 1995, 17(1): 183-194.
    [4] 崔东明, 范宝春, 邢晓江.驻定在高速弹丸上的斜爆轰波[J].爆炸与冲击, 2002, 22(3): 263-266. http://d.wanfangdata.com.cn/Periodical/bzycj200203013

    Cui D M, Fan B C, Xin X J. Oblique detonation stabilized on a hypervelocity projectile[J]. Explosion and Shock Waves, 2002, 22(3): 263-266. (in Chinese) http://d.wanfangdata.com.cn/Periodical/bzycj200203013
    [5] 龚自正, 杨继运, 代福, 等. CAST空间碎片超高速撞击试验研究进展[J].航天器环境工程, 2009, 26(4): 301-307. http://www.cqvip.com/QK/89474X/200904/1001772863.html

    Gong Z Z, Yang J Y, Dai F, et al. Research progress of CAST space debris in hypervelocity impact experiments[J]. Spacecraft Environment Engineering, 2009, 26(4), 301-307. (in Chinese) http://www.cqvip.com/QK/89474X/200904/1001772863.html
    [6] 孙承纬.应用爆轰物理[M].北京: 国防工业出版社, 2000: 574-633.

    Sun C W. Applied Detonation Physics[M]. Beijing: National Defence Industry Press, 2000: 574-633. (in Chinese)
    [7] 俞宇颖.强冲击载荷作用下LY12铝合金的准弹性卸载特性及层裂研究[D].绵阳: 中国工程物理研究院, 2006: 116-127.

    Yu Y Y. Study on the quasi-elastic release behavior and spallation of LY12 aluminum alloy under strong shock loading[D]. Mianyang: China Academy of Engineering Physics, 2006: 116-127. (in Chinese)
    [8] 桂毓林, 刘仓理, 王彦平, 等. AF1410钢的层裂断裂特性研究[J].高压物理学报, 2006, 20(1): 34-38. http://d.wanfangdata.com.cn/Periodical/gywlxb200601008

    Gui Y L, Liu C L, Wang Y P, et al. Spall fracture properties of AF1410 steel[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 34-38. (in Chinese) http://d.wanfangdata.com.cn/Periodical/gywlxb200601008
    [9] 赵士操, 宋振飞, 姬广富, 等.一种基于二级轻气炮平台的超高速弹丸发射装置设计[J].高压物理学报, 2011, 25(6): 557-564.

    Zhao S C, Song Z F, Ji G F, et al. A novel design of a hypervelocity launcher based on two-stage gas gun facilities[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 557-564. (in Chinese)
    [10] 李维新.一维不定常流与冲击波[M].北京: 国防工业出版社, 2003: 40-46.

    Li W X. One-Dimensional Unsteady Flow and Shock Wave[M]. Beijing: National Defence Industry Press, 2003: 40-46. (in Chinese)
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  6470
  • HTML全文浏览量:  2305
  • PDF下载量:  254
出版历程
  • 收稿日期:  2012-12-17
  • 修回日期:  2013-03-28

目录

    /

    返回文章
    返回