Equation of State for Unsaturated Clay by Plate Impact Experiments
-
摘要: 利用口径为24 mm的二级轻气炮实验装置,结合磁测速和光纤探针动态测试技术,分别对含水率为0、8%和15%的3种非饱和黏土试样进行了平板撞击实验,试样的压力峰值区间为1.29~32.54 GPa。实验结果表明,含水率对非饱和黏土的冲击压缩特性影响明显。当非饱和黏土受到冲击压缩时,孔隙被进一步压实,滞留在黏土孔隙中的水和空气来不及排出,从而与黏土中的固体颗粒一起,共同支配非饱和黏土的冲击压缩特性;而由于水的相对不可压缩性,导致黏土的可压缩性随着含水率的升高而下降。提出一种修正的三相混合物状态方程,对3种含水率试样的压力-密度曲线进行了拟合,结果表明,该状态方程能够较好地描述不同含水率非饱和黏土的压力-密度关系。Abstract: Using a 24 mm bore two-stage light gas gun, plate impact experiments were performed on unsaturated clay at 3 moisture contents-0, 8% and 15%-to obtain its Hugoniot data.The shock wave motions in the samples were detected by fiber-optic pins, and the pressure in the sample ranged from 1.29 to 32.54 GPa.The experiment results indicate that the moisture content has a significant effect on the shock compression properties of unsaturated clay.While compressed, the gas and water in pores cannot escape promptly due to the transient loading time, thus they dominate the shock compression properties of unsaturated clay together with the solid grains.Since water is much stiffer than gas, the compressibility of unsaturated clay decreases as the moisture content increases.Besides, a modified three-phase equation of state is introduced to describe the pressure-density relationship of the unsaturated clay, which shows good agreement with the experimental data.
-
Key words:
- unsaturated clay /
- moisture content /
- two-stage light gas gun /
- plate impact /
- equation of state
-
表 1 黏土试样颗粒分析结果
Table 1. Particle size distribution in the clay sample
Particle dimension/
(mm)Mass proportion/
(%)<0.005 28.6 0.005-0.075 71.4 >0.075 0 表 2 飞片材料参数
Table 2. Parameters of flyer plate materials
Material Density/
(g/cm3)Sound speed/
(km/s)λ Al alloy 2.785 5.328 1.338 Cu 8.93 3.940 1.489 Ta 16.656 3.437 1.19 表 3 平板撞击实验结果
Table 3. Results of plate impact experiments
Sample
conditionFlyer
materialFlyer
velocity/
(km/s)Shock
arrival time/
(ns)Sample
thickness/
(mm)Particle
velocity/
(km/s)Shock
velocity/
(km/s)Longitudinal
stress/
(GPa)Dry clay Al 0.561 1 868 2.98 0.48 1.60 1.29 Cu 1.042 1 054 2.96 0.92 2.81 4.40 Cu 2.340 658 2.94 1.97 4.47 14.95 Ta 3.180 556 3.02 2.79 5.43 25.71 Wet clay
(Moisture
content=8%)Al 0.563 1 564 2.94 0.46 1.88 1.58 Cu 1.101 956 2.98 0.95 3.12 5.46 Cu 2.290 640 3.00 1.89 4.69 16.26 Ta 3.190 500 2.94 2.74 5.88 29.60 Wet clay
(Moisture
content=15%)Al 0.495 1 192 3.00 0.37 2.52 1.84 Cu 1.142 848 2.98 0.97 3.51 6.63 Cu 2.370 538 2.88 1.89 5.35 19.81 Ta 3.130 478 3.01 2.64 6.30 32.54 -
[1] Henrych J.爆炸动力学及其应用[M].熊建国, 译.北京: 科学出版社, 1987: 161-170.Henrych J. The Dynamics of Explosion and Its Application[M]. Translated by Xiong J G. Beijing: Science Press, 1987: 161-170. (in Chinese) [2] Tsembelis K, Proud W G, Vaughan B A M. The behavior of sand under shock wave loading: Experiments and simulations[C]//Benitez F G. Proceedings of the 14th DYMAT Technical Meeting on Behavior of Materials at High Strain Rates: Numerical Modeling. Sevilla, 2002: 193-203. [3] Resnyansky A D, Bourne N K. Shock compression of dry and hydrated sand[C]//Furnish M D. Shock Compression of Condensed Matter-2003. New York: American Institute of Physics, 2004: 1474-1477. [4] Chapman D J, Tsembelis K, Proud W G. The behaviour of dry sand under shock-loading[C]//Furnish M D. Shock Compression of Condensed Matter-2005. New York: American Institute of Physics, 2006: 1445-1448. [5] Chapman D J, Tsembelis K, Proud W G. The behavior of water saturated sand under shock-loading[C]//O'Brien E. Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics. Saint Louis: The Society for Experimental Mechanics, 2006: 834-840. [6] Chapman D J, Braithwaite C H, Proud W G. Shock-loading of statically compacted soil[C]//Elert M, Furnish M D, Cliau R, et al. Shock Compression of Condensed Matter-2007. New York: American Institute of Physics, 2007: 1367-1370. [7] Brown J L, Vogler T J, Chhabildaz L C, et al. Shock response of dry sand, SAND2007-3524[R]. USA: Sandia National Laboratories, 2007. [8] Bragov A M, Lomunov A K, Sergeichev I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates[J]. Int J Impact Eng, 2008, 35(9): 967-976. doi: 10.1016/j.ijimpeng.2007.07.004 [9] Arlery M, Gardou M, Fleureau J, et al. Dynamic behaviour of dry and water-saturated sand under planar shock conditions[J]. Int J Impact Eng, 2010, 37(1): 1-10. doi: 10.1016/j.ijimpeng.2009.07.009 [10] 钱七虎, 王明洋.岩土中的冲击爆炸效应[M].北京: 国防工业出版社, 2010: 205-213.Qian Q H, Wang M Y. Impact and Explosion Effects in Rock and Soil[M]. Beijing: National Defence Industry Press, 2010: 205-213. (in Chinese) [11] Wang Z, Lu Y. Numerical analysis on dynamic deformation mechanism of soils under blast loading[J]. Soil Dyn Earthq Eng, 2003, 23(8): 705-714. doi: 10.1016/S0267-7261(03)00076-9 [12] Wang Z, Hao H, Lu Y. A three-phase soil model for simulating stress wave propagation due to blast loading[J]. Int J Numer Anal Met, 2004, 28(1): 33-56. [13] 汤文辉, 张若棋.物态方程理论及计算概论[M].第2版.北京: 高等教育出版社, 2008: 293-295.Tang W H, Zhang R Q. Introduction to Theory and Computation of Equations of State[M]. 2nd ed. Beijing: Higher Education Press, 2008: 293-295. (in Chinese) [14] 王荣波, 田建华, 何莉华, 等.石英光纤探针在非金属材料冲击实验中的应用[J].爆炸与冲击, 2006, 26(3): 284-287.Wang R B, Tian J H, He L H, et al. Application of fiber-optic pin to nonmetallic shock experiments[J]. Explosion and Shock Waves, 2006, 26(3): 284-287. (in Chinese)