-
摘要: 为分析固体材料的准等熵压缩实验数据,引入了率相关本构方程和流体弹塑性模型,建立了考虑材料强度效应的反积分数据处理方法。利用CQ-1.5磁压驱动装置中多晶钽的准等熵压缩实验数据,对钽的屈服强度和流应力进行了反积分数值模拟和分析,计算了钽的拉格朗日声速和应变率分布情况。得到了钽在准等熵压缩过程中样品内部及加载面上压力和速度的分布及演变规律,获得了30 GPa压力下钽的准等熵屈服强度约为1.85 GPa,准等熵弹性屈服极限约为2.9 GPa。此外,计算得到了与Sandia实验室数据高度吻合的应力-应变曲线和准等熵p-V参考线。Abstract: For analyzing the quasi-isentropic compression experimental data of solid materials, a backward integration method with strength effect is presented based on rate-dependent constitutive equation and fluid elastic-plastic model. From the quasi-isentropic compression data of tantalum on CQ-1.5 with a loading time of 700 ns, the yield strength, deviatoric stress and interior information of the tantalum sample are calculated. Moreover, the Lagrangian sound speed and strain rate are also analyzed. As a result, the driving history and stress distribution of the tantalum sample are obtained. It is found that the yield strength of 1.85 GPa corresponds to the peak stress (30 GPa) with strain rates of 10 5 s-1, and the isentropic elastic limit is about 2.9 GPa. Numerical results show that the calculated stress-strain and pressure-volume curves appear to be in good agreement with the experimental data from Sandia National Laboratory.
-
Davis J P. Experimental Measurement of the Principal Isentrope for Aluminum 6061-T6 to 240 GPa [J]. J Appl Phys, 2006, 99(10): 103512. Hall C A. Isentropic Compression Experiments on the Sandia Z Accelerator [J]. Phys Plasmas, 2000, 7(5): 2069-2075. Hereil P L, Lassalle F, Avrillaud G. GEPI: An Ice Generator for Dynamic Material Characterization and Hypervelocity Impact [J]. AIP Conference Proceedings, 2004, 706(1): 1209-1212. Baer M R, Hall C A, Gustavsen R L, et al. Isentropic Loading Experiments of a Plastic Bonded Explosive and Constituents [J]. J Appl Phys, 2007, 101(3): 034906. Asay J R, Ao T, Vogler T J, et al. Yield Strength of Tantalum for Shockless Compression to 18 GPa [J]. J Appl Phys, 2009, 106(7): 073515. Vogler T J. On Measuring the Strength of Metals at Ultrahigh Strain Rates [J]. J Appl Phys, 2009, 106(5): 053530. Vogler T J, Ao T, Asay J R. High-Pressure Strength of Aluminum under Auasi-Isentropic Loading [J]. Int J Plast, 2009, 25(4): 671-694. Smith R F, Eggert J H, Jankowski A, et al. Stiff Response of Aluminum under Ultrafast Shockless Compression to 110 GPa [J]. Phys Rev Lett, 2007, 98(6): 065701. Cai J T, Wang G J, Zhao J H, et al. Magnetically Driven Quasi-Isentropic Compression Experiments of Solid Explosives [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 455-460. (in Chinese) 蔡进涛, 王桂吉, 赵剑衡, 等. 固体炸药的磁驱动准等熵压缩实验研究 [J]. 高压物理学报, 2010, 24(6): 455-460. Wang G J, Sun C W, Tan F L, et al. The Compact Capacitor Bank CQ-1. 5 Employed in Magnetically Driven Isentropic Compression and High Velocity Flyer Plate Experiments [J]. Rev Sci Instrum, 2008, 79(5): 053904. Hayes D B. Backward Integration of the Equations of Motion to Correct for Free Surface Perturbations, SAND2001-1440 [R]. USA: Sandia National Laboratories, 2001. Steinberg D J, Lund C M. A Constitutive Model for Strain Rates from 10-4 to 106 s-1 [J]. J Appl Phys, 1989, 65(4): 1528-1533. Mo J J. Calculation of Metallic Compression Isentropes and Study on Isentropic Compression Experiments by Detonation Driving [D]. Mianyang: China Academy of Engineering Physics, 2006: 46-49. (in Chinese) 莫建军. 金属等熵压缩线计算及爆轰加载等熵压缩实验研究 [D]. 绵阳: 中国工程物理研究院, 2006: 46-49. Baer M R, Hall C A, Gustavsen R L, et al. Isentropic Loading Experiments of a Plastic Bonded Explosive and Constituents [J]. J Appl Phys, 2007, 101(3): 034906. Steinberg D J. A Rate-Dependent Constitutive Model for Molybdenum [J]. J Appl Phys, 1993, 74(6): 3827-3831. Steinberg D J. Constitutive Model Used in Computer Simulation of Time-Resolved, Shock-Wave Data [J]. Int J Impact Eng, 1987, 5(1-4): 603-611. Tan H. Introduction to Experimental Shock-Wave Physics [M]. Beijing: National Defence Industry Press, 2007. (in Chinese) 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007.
点击查看大图
计量
- 文章访问数: 8306
- HTML全文浏览量: 532
- PDF下载量: 649