Shock Temperature Measurement for Metals-Influences of a Gap Interface between the Driver Plate and the Metal Film Sample on the Shock Temperature Measurement by Using Radiometry
-
摘要: 讨论了在利用辐射法测量金属的冲击波温度时,金属基板(靶板)与金属镀膜样品之间的间隙对金属镀膜样品/窗口界面上的温度的影响及其对冲击波温度测量的意义。金属基板/间隙/镀膜样品/透明窗口这样一种由四层介质组成的典型的靶-样品装置被广泛用于金属材料的冲击波温度测量中。利用拉普拉斯变换对上述四层介质模型在经受冲击波压缩作用时的热传导方程进行求解,结果表明:当冲击波扫过金属镀膜样品与窗口之间的界面(样品/窗口界面)后,该界面温度的弛豫过程与间隙的尺度密切相关:当间隙的厚度与镀膜层的厚度相近时,样品/窗口界面的台阶形温度剖面的起始部分会出现一个尖峰,尖峰的高度与宽度与间隙的尺度相关;如果金属镀膜层的厚度远大于间隙的厚度,则该温度剖面为一平顶台阶。Abstract: Radiometry is one of the most commonly used techniques in shock temperature measurement for metals. In this paper, we investigated the thermal relaxation history at the sample/window interface for a widely used four-layer target-sample configuration of the metal drive/gap/metal film/transparent window system, and its influence to shock temperature measurement of metals. Although there does not exist a universal analytical solution for the thermal conduction equation of such a four-layer model, an analytical approximation solution does exist, which indicates that the thermal relaxation at the sample/window interface following the shock compression is closely related with the dimension of the gap. If the width of the gap can be compared with the thickness of the film, a sharp peak will appear at the initial of the step-like temperature profile of the sample/window interface, the height and the width of the peak are closely connected with the dimension of the gap. On the other hand, if the thickness of the metal film is much greater than that of the gap, however, a stepped temperature interface with a flat top will appear. Necessary conditions for which a reasonable target-sample assembly should meet with are also discussed.
-
Key words:
- radiometry /
- shock temperature /
- thermal conductivity /
- thermal diffusivity /
- Laplace transform
-
Urtiew P A, Grover R. Temperature Deposition Caused by Shock Interaction with Material Interfaces [J]. J Appl Phys, 1974, 45: 140. Grover R, Urtiew P A. Thermal Relaxation at Interfaces Following Shock Compression [J]. J Appl Phys, 1974, 45: 146. Williams Q, Bass J D, Svendsen B, et al. The Temperature of Shock Compressed Iron to 250 Gigapascals: A Constrain on the Temperature at Earth's Core [J]. Science, 1987, 236: 181. Gu Chenggang, Tan Hua, Jing Fuqian, et al. Discussion on the Thermal Relaxation and Finite Transition Rate Effects at Shocked Metal/Window Interface. In: Zhang Guanren, Huang Shihui, Tang Yizhi, eds. Proceeding of the 2nd International Symposium on Intense Dynamic Loading and Its Effects. Chengdu: Sichuan University Press, 1992: 298. 汤文辉. 金属冲击温度测量的理论和实验研究 [M]. 长沙: 国防科技大学, 1995. Tang Wenhuijing Fuqian, Hu Jinbiao, et al. New Method for Determining the Shock Temperature of Metals [J]. Chin Phys Lett, 1994, 11(9): 569. 卫锦先主编. 航天材料热物性学 [M]. 北京: 宇航出版社, 1997. 王正行编著. 近代物理学 [M]. 北京: 北京大学出版社, 1996. Mott N F, Ones H. The Theory of the Properties of Metals and Alloys [M]. New York: Dover Publications Inc, 1958. Tan H, Ahrens T J. Shock Temperature Measurements for Metals [J]. High Pressure Research, 1990, 2: 159-182. Keeler R N, Royce E B. Electrical Conductivity of Condensed Media at High Pressures. In: Caldivola P, Knoepfel H, eds. Physics of High Energy Density, Proceedings International School Phys. Enrico Femi XL VIII. New York, N. Y.: American Press, 1971: 418. 汤文辉. 高压物理学报, 1994, 8(2): 125-132.
点击查看大图
计量
- 文章访问数: 7265
- HTML全文浏览量: 319
- PDF下载量: 686