Volume 38 Issue 4
Jul 2024
Turn off MathJax
Article Contents
WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
Citation: WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776

First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate

doi: 10.11858/gywlxb.20240776
  • Received Date: 01 Apr 2024
  • Rev Recd Date: 09 Apr 2024
  • Accepted Date: 15 Apr 2024
  • Issue Publish Date: 25 Jul 2024
  • The high-pressure structure and physical properties of RbNO3 at zero temperature was systematically explored using first-principles calculations based on density generalized theory combined with CALYPSO crystal structure predictions. The accuracy of four different functionals was compared based on experimental data of the RbNO3-Ⅳ phase, and the revised PBE for solids (PBEsol) functional was found to be the most reliable. The zero-temperature phase transition sequence of RbNO3 predicted is R3mPnmaPmmn (experimental phaseⅤ) based on the PBEsol functional, and the two phase transition pressures are 1.7 and 8.2 GPa. The two phase transitions are first-order phase transitions, and the volume collapse rates reach 3.73% and 2.54%, respectively. This suggests that RbNO3 at low pressure may have new low-temperature phases those are different from P31 structure given by experiment in the room temperature and ambient pressure. In the energy-stabilized pressure interval, all three phases satisfy the “Born-Huangkun” elastic stability criteria, and there is no phonon virtual frequency phenomenon in the whole Brillouin zone, which indicates that they are dynamically stable structures. The electronic property analysis showed that the three phases are semiconductors, and the band gap changes caused by the phase transition are generally small, but the pressure generally inhibits the charge transfer from alkali metal ions to nitrate ions. The high-pressure phase transition sequence predicted in this paper and the elasticity, lattice dynamics, and electronic structure properties of the individual phases can provide a reference for subsequent experimental and theoretical studies.

     

  • loading
  • [1]
    LAUE W, THIEMANN M, SCHEIBLER E, et al. Nitrates and nitrites [J]. Ullmann’s Encyclopedia of Industrial Chemistry, 2000, 24: 153–157.
    [2]
    MIAO M S, SUN Y H, ZUREK E, et al. Chemistry under high pressure [J]. Nature Reviews Chemistry, 2020, 4(10): 508–527. doi: 10.1038/s41570-020-0213-0
    [3]
    SANTOS S S M, MARCONDES M L, JUSTO J F, et al. Calcium carbonate at high pressures and high temperatures: a first-principles investigation [J]. Physics of the Earth and Planetary Interiors, 2020, 299: 106327. doi: 10.1016/j.pepi.2019.106327
    [4]
    LEE W E, GILBERT M, MURPHY S T, et al. Opportunities for advanced ceramics and composites in the nuclear sector [J]. Journal of the American Ceramic Society, 2013, 96(7): 2005–2030. doi: 10.1111/jace.12406
    [5]
    SOLEIMANPOUR S, SADRAMELI S M, MOUSAVI S A H S, et al. Preparation and characterization of high temperature shape stable NaNO3/diatomite phase change materials with nanoparticles for solar energy storage applications [J]. Journal of Energy Storage, 2022, 45: 103735. doi: 10.1016/j.est.2021.103735
    [6]
    DIÉGUEZ O, VANDERBILT D. Theoretical study of ferroelectric potassium nitrate [J]. Physical Review B, 2007, 76(13): 134101. doi: 10.1103/PhysRevB.76.134101
    [7]
    RAO C N R, PRAKASH B, NATARAJAN M. Crystal structure transformations in inorganic nitrites, nitrates, and carbonates: NSRDS-NBS 53 [R]. Washington, USA: National Bureau of Standards, 1975.
    [8]
    AHTEE M, HEWAT A W. Structures of the high temperature phases of rubidium nitrate [J]. Physica Status Solidi (A), 1980, 58(2): 525–531. doi: 10.1002/pssa.2210580224
    [9]
    LIU J J, DUAN C G, OSSOWSKI M M, et al. Molecular dynamics simulation of structural phase transitions in RbNO3 and CsNO3 [J]. Journal of Solid State Chemistry, 2001, 160(1): 222–229. doi: 10.1006/jssc.2001.9226
    [10]
    DEAN C, HAMBLEY T W, SNOW M R. Structures of phase Ⅳ rubidium nitrate, RbNO3, and phase Ⅱ caesium nitrate, CsNO3 [J]. Acta Crystallographica Section C, 1984, 40(9): 1512–1515.
    [11]
    WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [12]
    WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466.
    [13]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [14]
    DION M, RYDBERG H, SCHRÖDER E, et al. Van der Waals density functional for general geometries [J]. Physical Review Letters, 2004, 92(24): 246401. doi: 10.1103/PhysRevLett.92.246401
    [15]
    PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2008, 100(13): 136406. doi: 10.1103/PhysRevLett.100.136406
    [16]
    HAMMER B, HANSEN L B, NØRSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Physical Review B, 1999, 59(11): 7413–7421. doi: 10.1103/PhysRevB.59.7413
    [17]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [18]
    BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [19]
    TOGO A, TANAKA I. First principles phonon calculations in materials science [J]. Scripta Materialia, 2015, 108: 1–5. doi: 10.1016/j.scriptamat.2015.07.021
    [20]
    HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
    [21]
    OUADHA I, RACHED H, AZZOUZ-RACHED A, et al. Study of the structural, mechanical and thermodynamic properties of the new MAX phase compounds (Zr1−xTix)3AlC2 [J]. Computational Condensed Matter, 2020, 23: e00468. doi: 10.1016/j.cocom.2020.e00468
    [22]
    MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data [J]. Journal of Applied Crystallography, 2011, 44(6): 1272–1276. doi: 10.1107/S0021889811038970
    [23]
    MISHRA K K, CHANDRA S, SALKE N P, et al. Soft modes and anharmonicity in H3[Co(CN)6]: Raman spectroscopy and first-principles calculations [J]. Physical Review B, 2015, 92(13): 134112. doi: 10.1103/PhysRevB.92.134112
    [24]
    POHL J, POHL D, ADIWIDJAJA G. Phase transition in rubidium nitrate at 346 K and structure at 296, 372, 413 and 437 K [J]. Acta Crystallographica Section B, 1992, 48(2): 160–166. doi: 10.1107/S0108768191013459
    [25]
    SHAMSUZZOHA M, LUCAS B W. Structure (neutron) of phase Ⅳ rubidium nitrate at 298 and 403 K [J]. Acta Crystallographica Section B, 1982, 38(9): 2353–2357. doi: 10.1107/S0567740882008772
    [26]
    SMITH D, LAWLER K V, MARTINEZ-CANALES M, et al. Postaragonite phases of CaCO3 at lower mantle pressures [J]. Physical Review Materials, 2018, 2(1): 013605. doi: 10.1103/PhysRevMaterials.2.013605
    [27]
    WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 054115. doi: 10.1103/PhysRevB.76.054115
    [28]
    MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
    [29]
    BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1955, 23(7): 474.
    [30]
    UKITA M, TOYOURA K, NAKAMURA A, et al. Pressure-induced phase transition of calcite and aragonite: a first principles study [J]. Journal of Applied Physics, 2016, 120(14): 142118. doi: 10.1063/1.4961723
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views(105) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return