Volume 38 Issue 4
Jul 2024
Turn off MathJax
Article Contents
CHENG Hao, WANG Meng, LI Xiang, QU Yutong, WU Hailong, LIU Zizhen, LI Bo. Adiabatic Shear Failure Behavior of 30CrMnMo Steel under Pulse Stress Impact[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044101. doi: 10.11858/gywlxb.20230812
Citation: CHENG Hao, WANG Meng, LI Xiang, QU Yutong, WU Hailong, LIU Zizhen, LI Bo. Adiabatic Shear Failure Behavior of 30CrMnMo Steel under Pulse Stress Impact[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044101. doi: 10.11858/gywlxb.20230812

Adiabatic Shear Failure Behavior of 30CrMnMo Steel under Pulse Stress Impact

doi: 10.11858/gywlxb.20230812
  • Received Date: 13 Dec 2023
  • Rev Recd Date: 28 Feb 2024
  • Available Online: 13 Jun 2024
  • Issue Publish Date: 25 Jul 2024
  • In order to study the adiabatic shear failure behavior and evolution characteristics of 30CrMnMo steel under pulse stress impact, a split Hopkinson pressure bar was used to conduct an axisymmetric cap shaped specimen for impact shear experiments. The shear failure evolution and temperature distribution in the shear zone under different incident pulse stress loads were numerically simulated using LS-DYNA dynamic finite element software. The results indicate that the adiabatic shear failure of the cap shaped specimen is related to the specific impulse of the pulse stress. For cap shaped specimen of 30CrMnMo steel, the specific impulse of pulse stress corresponding to the adiabatic shear failure is approximately constant. In numerical simulation, when the grid size is smaller than the width of the shear band, the local temperature rise of hot spot within the shear band can be effectively simulated. The evolution of adiabatic shear instability is characterized by simultaneous propagation from the corner of the shear zone to the center, and the materials inside and outside the shear zone mainly undergo two stages: uniform shear deformation and rapid expansion of instability.

     

  • loading
  • [1]
    KURIYAMA S, MEYERS M A. Numerical modeling of the propagation of an adiabatic shear band [J]. Metallurgical Transactions A, 1986, 17(3): 443–450. doi: 10.1007/BF02643951
    [2]
    BONNET-LEBOUVIER A S, MOLINARI A, LIPINSKI P, et al. Analysis of the dynamic propagation of adiabatic shear bands [J]. International Journal of Solids and Structures, 2002, 39(16): 4249–4269. doi: 10.1016/S0020-7683(02)00244-5
    [3]
    MEDYANIK S N, LIU W K, LI S F. On criteria for dynamic adiabatic shear band propagation [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(7): 1439–1461. doi: 10.1016/j.jmps.2006.12.006
    [4]
    TENG X, WIERZBICKI T, COUQUE H. On the transition from adiabatic shear banding to fracture [J]. Mechanics of Materials, 2007, 39(2): 107–125. doi: 10.1016/j.mechmat.2006.03.001
    [5]
    付应乾, 董新龙. 帽型试样动态绝热剪切破坏演化分析 [J]. 固体力学学报, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004

    FU Y Q, DONG X L. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004
    [6]
    GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. doi: 10.1016/j.jmps.2019.103811
    [7]
    ZHU S X, GUO Y Z, CHEN H S, et al. Formation of adiabatic shear band within Ti-6Al-4V: effects of stress state [J]. Mechanics of Materials, 2019, 137: 103102. doi: 10.1016/j.mechmat.2019.103102
    [8]
    王财源, 余丰. 复杂应力状态下GCr15轴承钢的动态剪切及熔融特性研究 [J]. 力学季刊, 2022, 43(1): 84–92. doi: 10.15959/j.cnki.0254-0053.2022.01.009

    WANG C Y, YU F. Research on dynamic shearing and melting characteristics of GCr15 bearing steel under complex stress state [J]. Chinese Quarterly of Mechanics, 2022, 43(1): 84–92. doi: 10.15959/j.cnki.0254-0053.2022.01.009
    [9]
    MEYER L W, MANWARING S. Critical adiabatic shear strength of low alloyed steel under compressive loading [M]//MURR L E, STAUDHAMMER K P, MEYERS M A. Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena. New York: Marcel Dekker Inc., 1985: 657–674.
    [10]
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    [11]
    杨扬, 程信林. 绝热剪切的研究现状及发展趋势 [J]. 中国有色金属学报, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001

    YANG Y, CHENG X L. Current status and trends in researches on adiabatic shearing [J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001
    [12]
    TRESCA M H. On further applications of the flow of solids [J]. Proceedings of the Institution of Mechanical Engineers, 1878, 29(1): 301–345. doi: 10.1243/PIME_PROC_1878_029_017_02
    [13]
    RULE W K, JONES S E. A revised form for the Johnson-Cook strength model [J]. International Journal of Impact Engineering, 1998, 21(8): 609–624. doi: 10.1016/S0734-743X(97)00081-X
    [14]
    BØRVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. doi: 10.1016/j.ijimpeng.2008.12.003
    [15]
    周刚毅. TA2钛合金绝热剪切破坏特性及应力状态、晶粒度影响 [D]. 宁波: 宁波大学, 2018.

    ZHOU G Y. Adiabatic shearing behavior of TA2 titanium alloy and its influence of stress state, grain size [D]. Ningbo: Ningbo University, 2018.
    [16]
    LI J R, YU J L, WEI Z G. Influence of specimen geometry on adiabatic shear instability of tungsten heavy alloys [J]. International Journal of Impact Engineering, 2003, 28(3): 303–314. doi: 10.1016/S0734-743X(02)00022-2
    [17]
    WEI Z G, YU J L, LI J, et al. Influence of stress condition on adiabatic shear localization of tungsten heavy alloys [J]. International Journal of Impact Engineering, 2001, 26(1): 843–852.
    [18]
    RANC N, TARAVELLA L, PINA V, et al. Temperature field measurement in titanium alloy during high strain rate loading-adiabatic shear bands phenomenon [J]. Mechanics of Materials, 2008, 40(4/5): 255–270. doi: 10.1016/j.mechmat.2007.08.002
    [19]
    WRIGHT T W, OCKENDON H. A model for fully formed shear bands [J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6): 1217–1226. doi: 10.1016/0022-5096(92)90013-R
    [20]
    BRONKHORST C A, CERRETA E K, XUE Q, et al. An experimental and numerical study of the localization behavior of tantalum and stainless steel [J]. International Journal of Plasticity, 2006, 22(7): 1304–1335. doi: 10.1016/j.ijplas.2005.10.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(78) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return