Volume 38 Issue 5
Sep 2024
Turn off MathJax
Article Contents
QU Jia, WANG Yiming, WANG Xin, YANG Wenge. Pressure-Induced Structural Phase Transition in Halide Perovskite CsGeBr3[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050102. doi: 10.11858/gywlxb.20230769
Citation: QU Jia, WANG Yiming, WANG Xin, YANG Wenge. Pressure-Induced Structural Phase Transition in Halide Perovskite CsGeBr3[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050102. doi: 10.11858/gywlxb.20230769

Pressure-Induced Structural Phase Transition in Halide Perovskite CsGeBr3

doi: 10.11858/gywlxb.20230769
  • Received Date: 25 Oct 2023
  • Rev Recd Date: 15 Dec 2023
  • Accepted Date: 25 Dec 2023
  • Available Online: 19 Jul 2024
  • Issue Publish Date: 29 Sep 2024
  • In recent years, pressure-induced physical properties of halide perovskites have attracted significant research interests due to their excellent optical and electronic properties. The study of the structural evolution of perovskite under compression is the foundation and key point of all physical property researches. In this paper, we systematically investigated the structural evolution of the all-inorganic halide perovskite CsGeBr3 under compression using in situ high-pressure synchrotron X-ray diffraction, in situ high-pressure Raman spectroscopy, ultraviolet/visible/near-infrared spectrophotometry, and first-principles calculations. Our results show that CsGeBr3 undergoes a reversible rhombohedral $ R3m $ to cubic $ Pm\overline{3}m $ structural phase transition at 1 GPa, and the cubic $ Pm\overline{3}m $ phase maintains at higher pressures. This study provides important scientific basis for further exploration of the properties and applications of halide perovskites under compression.

     

  • loading
  • [1]
    SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design [J]. Chemical Reviews, 2016, 116(7): 4558–4596. doi: 10.1021/acs.chemrev.5b00715
    [2]
    MITZI D B, CHONDROUDIS K, KAGAN C R. Organic-inorganic electronics [J]. IBM Journal of Research and Development, 2001, 45(1): 29–45. doi: 10.1147/rd.451.0029
    [3]
    LI W, WANG Z M, DESCHLER F, et al. Chemically diverse and multifunctional hybrid organic-inorganic perovskites [J]. Nature Reviews Materials, 2017, 2(3): 16099. doi: 10.1038/natrevmats.2016.99
    [4]
    MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing optoelectronic properties of metal halide perovskites [J]. Chemical Reviews, 2016, 116(21): 12956–13008. doi: 10.1021/acs.chemrev.6b00136
    [5]
    GOLDSCHMIDT V M. Die gesetze der krystallochemie [J]. Naturwissenschaften, 1926, 14(21): 477–485. doi: 10.1007/BF01507527
    [6]
    SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties [J]. Chemical Reviews, 2019, 119(5): 3296–3348. doi: 10.1021/acs.chemrev.8b00644
    [7]
    FU Y P, ZHU H M, CHEN J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties [J]. Nature Reviews Materials, 2019, 4(3): 169–188. doi: 10.1038/s41578-019-0080-9
    [8]
    CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells [J]. Science, 2017, 358(6364): 739–744. doi: 10.1126/science.aam6323
    [9]
    PETRUS M L, SCHLIPF J, LI C, et al. Capturing the sun: a review of the challenges and perspectives of perovskite solar cells [J]. Advanced Energy Materials, 2017, 7(16): 1700264. doi: 10.1002/aenm.201700264
    [10]
    LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature, 2018, 562(7726): 245–248. doi: 10.1038/s41586-018-0575-3
    [11]
    WANG N N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells [J]. Nature Photonics, 2016, 10(11): 699–704. doi: 10.1038/nphoton.2016.185
    [12]
    SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization [J]. Nature Communications, 2015, 6: 7586. doi: 10.1038/ncomms8586
    [13]
    XING J, YAN F, ZHAO Y W, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles [J]. ACS Nano, 2016, 10(7): 6623–6630. doi: 10.1021/acsnano.6b01540
    [14]
    AHMADI M, WU T, HU B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics [J]. Advanced Materials, 2017, 29(41): 1605242. doi: 10.1002/adma.201605242
    [15]
    DOU L T, YANG Y M, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J]. Nature Communications, 2014, 5: 5404. doi: 10.1038/ncomms6404
    [16]
    ZHOU Y X, HUANG Y Y, XU X L, et al. Nonlinear optical properties of halide perovskites and their applications [J]. Applied Physics Reviews, 2020, 7(4): 041313. doi: 10.1063/5.0025400
    [17]
    PARK N G. Perovskite solar cells: an emerging photovoltaic technology [J]. Materials Today, 2015, 18(2): 65–72. doi: 10.1016/j.mattod.2014.07.007
    [18]
    SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) [J]. Advanced Materials, 2015, 27(44): 7162–7167. doi: 10.1002/adma.201502567
    [19]
    WANG Y M, LI M T, PEI C Y, et al. Critical current density and vortex phase diagram in the superconductor Sn0.55In0.45Te [J]. Physical Review B, 2022, 106(5): 054506. doi: 10.1103/PhysRevB.106.054506
    [20]
    LIU X Q, LI M T, ZHANG Q, et al. Pressure engineering promising transparent oxides with large conductivity enhancement and strong thermal stability [J]. Advanced Science, 2022, 9(31): 2202973. doi: 10.1002/advs.202202973
    [21]
    LI M T, ZHANG D J, HAN J, et al. Pressure-tuning structural and electronic transitions in semimetal CoSb [J]. Physical Review B, 2021, 104(5): 054511. doi: 10.1103/PhysRevB.104.054511
    [22]
    LI N N, FAN F R, SUN F, et al. Pressure-enhanced interplay between lattice, spin, and charge in the mixed perovskite La2FeMnO6 [J]. Physical Review B, 2019, 99(19): 195115. doi: 10.1103/PhysRevB.99.195115
    [23]
    LIU X Q, JIANG P, WANG Y M, et al. Tc up to 23.6 K and robust superconductivity in the transition metal δ-Ti phase at megabar pressure [J]. Physical Review B, 2022, 105(22): 224511. doi: 10.1103/PhysRevB.105.224511
    [24]
    YAN L M, DING C, LI M T, et al. Modulating charge-density wave order and superconductivity from two alternative stacked monolayers in a bulk 4Hb-TaSe2 heterostructure via pressure [J]. Nano Letters, 2023, 23(6): 2121–2128. doi: 10.1021/acs.nanolett.2c04385
    [25]
    QU J, YAN L M, LIU H, et al. Pressure-induced structural phase transition in corundum-related class Cu3TeO6 [J]. High Pressure Research, 2021, 41(3): 318–327. doi: 10.1080/08957959.2021.1975699
    [26]
    LI N N, ZHANG Q, WANG Y G, et al. Perspective on the pressure-driven evolution of the lattice and electronic structure in perovskite and double perovskite [J]. Applied Physics Letters, 2020, 117(8): 080502. doi: 10.1063/5.0014947
    [27]
    LÜ X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization [J]. Advanced Materials, 2016, 28(39): 8663–8668. doi: 10.1002/adma.201600771
    [28]
    LIN J, CHEN H, GAO Y, et al. Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(47): 23404–23409.
    [29]
    ASFIA M B, JAMAN S, RASHID M A. Pressure induced band gap shifting from ultra-violet to visible region of RbSrCl3 perovskite [J]. Materials Research Express, 2022, 9(9): 095902. doi: 10.1088/2053-1591/ac8f88
    [30]
    LÜ X J, STOUMPOS C, HU Q Y, et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites [J]. National Science Review, 2021, 8(9): 288. doi: 10.1093/nsr/nwaa288
    [31]
    JAFFE A, LIN Y, MAO W L, et al. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3 [J]. Journal of the American Chemical Society, 2017, 139(12): 4330–4333. doi: 10.1021/jacs.7b01162
    [32]
    TANG L C, HUANG J Y, CHANG C S, et al. New infrared nonlinear optical crystal CsGeBr3: synthesis, structure and powder second-harmonic generation properties [J]. Journal of Physics: Condensed Matter, 2005, 17(46): 7275–7286. doi: 10.1088/0953-8984/17/46/011
    [33]
    HUANG L Y, LAMBRECHT W R L. Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si [J]. Physical Review B, 2016, 93(19): 195211. doi: 10.1103/PhysRevB.93.195211
    [34]
    ZHANG Q Q, MUSHAHALI H, DUAN H M, et al. The linear and nonlinear optical response of CsGeX3 (X = Cl, Br, and I): the finite field and first-principles investigation [J]. Optik, 2019, 179: 89–98. doi: 10.1016/j.ijleo.2018.10.159
    [35]
    LIN Z G, TANG L C, CHOU C P. Study on mid-IR NLO crystals CsGe(Br xCl1– x)3 [J]. Optical Materials, 2008, 31(1): 28–34. doi: 10.1016/j.optmat.2008.01.004
    [36]
    LIN Z G, TANG L C, CHOU C P. Characterization and properties of novel infrared nonlinear optical crystal CsGe(Br xCl1– x)3 [J]. Inorganic Chemistry, 2008, 47(7): 2362–2367. doi: 10.1021/ic7011777
    [37]
    HUANG L Y, LAMBRECHT W R L. Vibrational spectra and nonlinear optical coefficients of rhombohedral CsGeX3 halide compounds with X = I, Br, Cl [J]. Physical Review B, 2016, 94(11): 115202. doi: 10.1103/PhysRevB.94.115202
    [38]
    SEO D K, GUPTA N, WHANGBO M H, et al. Pressure-induced changes in the structure and band gap of CsGeX3 (X = Cl, Br) studied by electronic band structure calculations [J]. Inorganic Chemistry, 1998, 37(3): 407–410. doi: 10.1021/ic970659e
    [39]
    SCHWARZ U, WAGNER F, SYASSEN K, et al. Effect of pressure on the optical-absorption edges of CsGeBr3 and CsGeCl3 [J]. Physical Review B, 1996, 53(19): 12545–12548. doi: 10.1103/PhysRevB.53.12545
    [40]
    MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [41]
    PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
    [42]
    LARSON A C, VON DREELE R B. General structure analysis system (GSAS): No. LAUR 86–748 [R]. Los Alamos: Los Alamos National Laboratory, 2004.
    [43]
    KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
    [44]
    BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [45]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(234) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return