六方亚稳相ReO3的高压合成和调控

王宁宁 单鹏飞 崔琦 王罡 程金光

王宁宁, 单鹏飞, 崔琦, 王罡, 程金光. 六方亚稳相ReO3的高压合成和调控[J]. 高压物理学报, 2024, 38(5): 050105. doi: 10.11858/gywlxb.20240843
引用本文: 王宁宁, 单鹏飞, 崔琦, 王罡, 程金光. 六方亚稳相ReO3的高压合成和调控[J]. 高压物理学报, 2024, 38(5): 050105. doi: 10.11858/gywlxb.20240843
WANG Ningning, SHAN Pengfei, CUI Qi, WANG Gang, CHENG Jinguang. Synthesis and High-Pressure Regulation of Hexagonal ReO3[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050105. doi: 10.11858/gywlxb.20240843
Citation: WANG Ningning, SHAN Pengfei, CUI Qi, WANG Gang, CHENG Jinguang. Synthesis and High-Pressure Regulation of Hexagonal ReO3[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050105. doi: 10.11858/gywlxb.20240843

六方亚稳相ReO3的高压合成和调控

doi: 10.11858/gywlxb.20240843
基金项目: 国家重点研发计划(2023YFA1406100,2021YFA1400200);国家自然科学基金(12025408,11921004,U23A6003);国家资助博士后研究人员计划(GZB20230828);中国博士后科学基金(2023M743740)
详细信息
    作者简介:

    王宁宁(1993-),男,博士研究生,主要从事新型量子材料的合成和奇异物理现象研究. E-mail:nnwang@iphy.ac.cn

    通讯作者:

    程金光(1982-),男,博士,研究员,主要从事高压极端条件下的新材料和奇异物理现象研究. E-mail: jgcheng@iphy.ac.cn

  • 中图分类号: O521.2

Synthesis and High-Pressure Regulation of Hexagonal ReO3

  • 摘要: ReO3具有A位缺失的立方钙钛矿结构,在压力下会经历系列结构相变。近期,通过高压低温电阻测试,发现其高压R-Ⅰ相(空间群为R$ \overline{3} $c)具有高达 17 K的超导转变温度。为探索新型Re氧化物超导体,采用ReO3为前驱体,在10 GPa和600 ℃的高压高温条件下制备了具有六方对称性(空间群为P6322)的亚稳相,并在常压下对其晶体结构、磁性和电输运性质进行了表征。实验发现,六方亚稳相的电阻在常压下250 K附近出现明显异常,温度低至2 K时仍未出现超导现象。高压电阻测试表明:常压下250 K附近ReO3的电阻异常迅速消失,亚稳相表现出典型的金属行为;在62 GPa的高压条件下,温度低至1.5 K时仍未出现超导电性。

     

  • 图  ReO3在高温高压处理前后的粉末XRD谱对比

    Figure  1.  Comparison of powder XRD patterns of ReO3 before and after high-pressure and high-temperature (HPHT) treatment

    图  (a) 高温高压处理后ReO3粉末的XRD谱和Rietveld精修结果,(b) ReO3高压相的晶体结构和 (c) 氧原子晶格结构

    Figure  2.  (a) Powder XRD pattern and Rietveld refinement results of ReO3 after HPHT treatment;(b) crystal structure for the P6322 phase of ReO3 and (c) the structure of oxygen atoms

    图  P6322相ReO3的磁性特征:(a) 在0.1 T外加磁场下,2~300 K温区的零场冷(zero-field-cooling, ZFC)和场冷(field cooling, FC)变温磁化率曲线χ(T)和磁化率倒数曲线χ−1(T)(粉色实线CW fitting为居里-外斯拟合曲线);(b)不同温度下,−7 ~7 T磁场范围内的磁化曲线

    Figure  3.  Characterization of magnetic property for the P6322 phase of ReO3: (a) temperature dependence of magnetic susceptibility χ(T) and its inverse χ−1(T), measured in the zero-field-cooling (ZFC) and field cooling (FC) modes under external field of 0.1 T at 2−300 K (The Curie-Weiss (CW) fitting curve is shown by the pink solid lines.);(b) isothermal magnetization M(H) curves measured between −7−7 T at various temperatures

    图  P6322相在常压下的变温电阻率曲线

    Figure  4.  Temperature dependence of resistivity for the P6322 phase at ambient pressure

    图  P6322相在高压下的电阻曲线

    Figure  5.  Temperature dependence of the resistance for the P6322 phase of ReO3 under high pressures

  • [1] HINKS D G, DABROWSKI B, JORGENSEN J D, et al. Synthesis, structure and superconductivity in the Ba1− xK xBiO3− y system [J]. Nature, 1988, 333(6176): 836–838. doi: 10.1038/333836a0
    [2] SLEIGHT A W, GILLSON J L, BIERSTEDT P E. High-temperature superconductivity in the BaPb1−xBixO3 systems [J]. Solid State Communications, 1975, 17(1): 27–28. doi: 10.1016/0038-1098(75)90327-0
    [3] KIM M, MCNALLY G M, KIM H H, et al. Superconductivity in (Ba, K)SbO3 [J]. Nature Materials, 2022, 21(6): 627–633. doi: 10.1038/s41563-022-01203-7
    [4] SHAN P F, LU T L, JIAO Y Y, et al. Superconductivity up to 17 K in the high-pressure rhombohedral-Ⅰ phase of ReO3: a potential oxide analogy of hydride superconductors [J]. arXiv: 2304.09011, 2023. https://arxiv.org/abs/2304.09011.
    [5] AXE J D, FUJII Y, BATLOGG B, et al. Neutron scattering study of the pressure-induced phase transformation in ReO3 [J]. Physical Review B, 1985, 31(2): 663–667. doi: 10.1103/PhysRevB.31.663
    [6] JØRGENSEN J E, STAUN OLSEN J, GERWARD L. Phase transitions in ReO3 studied by high-pressure X-ray diffraction [J]. Journal of Applied Crystallography, 2000, 33(2): 279–284. doi: 10.1107/S0021889899016659
    [7] ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
    [8] VEPŘEK S. The search for novel, superhard materials [J]. Journal of Vacuum Science & Technology A, 1999, 17(5): 2401–2420. doi: 10.1116/1.581977
    [9] EKIMOV E A, SIDOROV V A, BAUER E D, et al. Superconductivity in diamond [J]. Nature, 2004, 428(6982): 542–545. doi: 10.1038/nature02449
    [10] MCMILLAN P F. New materials from high-pressure experiments [J]. Nature Materials, 2002, 1(1): 19–25. doi: 10.1038/nmat716
    [11] DYUZHEVA T I, BENDELIANI N A, GLUSHKO A N, et al. Phase diagram of ReO3 up to 10 GPa [J]. Physica Scripta, 1989, 39(3): 341–342. doi: 10.1088/0031-8949/39/3/013
    [12] AKAHAMA Y, KAWAMURA H. Pressure calibration of diamond anvil Raman gauge to 410 GPa [J]. Journal of Physics: Conference Series, 2010, 215(1): 012195. doi: 10.1088/1742-6596/215/1/012195
    [13] HAN Y F, CHEN C Q, SUN H L, et al. Signature of topological semimetal in harmonic-honeycomb ReO3 [J]. Materials Today Physics, 2024, 40: 101309. doi: 10.1016/j.mtphys.2023.101309
  • 加载中
图(5)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  42
  • PDF下载量:  32
出版历程
  • 收稿日期:  2024-07-03
  • 修回日期:  2024-07-12
  • 录用日期:  2024-07-25
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回