自由边界影响下定向断裂爆破裂纹尖端应力分布与扩展机理

邱鹏 岳中文

邱鹏, 岳中文. 自由边界影响下定向断裂爆破裂纹尖端应力分布与扩展机理[J]. 高压物理学报, 2024, 38(5): 054104. doi: 10.11858/gywlxb.20240799
引用本文: 邱鹏, 岳中文. 自由边界影响下定向断裂爆破裂纹尖端应力分布与扩展机理[J]. 高压物理学报, 2024, 38(5): 054104. doi: 10.11858/gywlxb.20240799
QIU Peng, YUE Zhongwen. Stress Distribution and Propagation Mechanism of Crack Tip in Directional Fracturing Blasting under the Influence of Free Boundary[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054104. doi: 10.11858/gywlxb.20240799
Citation: QIU Peng, YUE Zhongwen. Stress Distribution and Propagation Mechanism of Crack Tip in Directional Fracturing Blasting under the Influence of Free Boundary[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054104. doi: 10.11858/gywlxb.20240799

自由边界影响下定向断裂爆破裂纹尖端应力分布与扩展机理

doi: 10.11858/gywlxb.20240799
基金项目: 国家自然科学基金(52204106,52174094);国家重点研发计划(2021YFC2902103);山西省基础研究面上项目(202203021211133)
详细信息
    作者简介:

    邱 鹏(1991-),男,博士,助理研究员,主要从事煤岩爆破断裂研究. E-mail:qiupeng@tyut.edu.cn

    通讯作者:

    岳中文(1975-),男,博士,教授,主要从事岩土工程、爆破工程、采矿工程研究. E-mail:zwyue75@163.com

  • 中图分类号: O389; O521.9

Stress Distribution and Propagation Mechanism of Crack Tip in Directional Fracturing Blasting under the Influence of Free Boundary

  • 摘要: 天然岩体常含自由边界,对定向断裂爆破产生干扰。为探究自由边界对定向断裂爆破的影响,采用爆炸焦散线方法和高速摄影技术,研究了含自由边界时定向爆炸裂纹尖端的应力分布和扩展机理。自由边界的反射P/S波作用于定向爆炸裂纹,改变了裂尖应力分布,产生了“弧线形”裂纹扩展路径。定向爆炸裂纹扩展可分为3个阶段。(1) 反射波作用前:裂尖受爆生气体“气楔”作用,产生Ⅰ型断裂,并沿直线扩展。(2) 反射波作用时:反射P/S波均使裂尖受张拉-剪切作用,产生Ⅰ-Ⅱ复合型断裂,裂纹偏转趋向自由边界;在反射P波的作用下裂尖产生畸变焦散斑,裂尖应力由K场主导变为非K场主导,而在反射S波的作用下裂尖应力恢复为K场主导。(3) 反射波作用后:裂尖在惯性作用下恢复为Ⅰ型断裂,沿直线扩展。在明确反射P/S波对定向爆炸裂纹作用的基础上,推导了自由边界影响下定向断裂爆破炮孔间距的计算公式,可为精细化定向断裂爆破提供理论参考。

     

  • 图  试件的示意图:(a) 试件尺寸,(b) 切缝药包

    Figure  1.  Schematic diagram of the specimen: (a) size of the specimen; (b) slotted cartridge

    图  爆炸焦散线实验系统

    Figure  2.  Blasting caustics experimental setup

    图  经典的焦散斑方法测量应力强度因子:(a) Ⅰ型焦散斑,(b) Ⅰ-Ⅱ复合型焦散斑,(c) 焦散斑尺寸比例,(d) δTδLmax

    Figure  3.  Classical stress intensity factor measurement by caustics patterns: (a) mode Ⅰ caustics pattern; (b) mixed Ⅰ-Ⅱ mode caustics pattern; (c) ratio of caustics pattern size; (d) δT and δLmax

    图  爆炸后裂纹路径:(a) 爆后试件S1,(b) 爆后试件S2,(c) 4条定向爆炸裂纹路径

    Figure  4.  Crack path after blasting: (a) specimen S1 after blasting; (a) specimen S2 after blasting;(c) paths of four directional blast-induced cracks

    图  反射波作用前:(a) 爆炸焦散斑图像,(b) t=30 μs时C1裂纹尖端“圆形”焦散斑,(c) t=40 μs时C1裂纹尖端“椭圆形”焦散斑

    Figure  5.  Before action of reflected waves: (a) blast-induced caustics patterns; (b) circle caustics pattern at the tip of crack C1 at 30 μs; (c) ellipse caustics pattern at the tip of crack C1 at 40 μs

    图  反射P波作用时:(a) 爆炸焦散斑图像,(b) t=50 μs时C1裂纹尖端的“椭圆形”焦散斑,(c) t=60 μs时C2裂纹尖端的Ⅰ-Ⅱ复合型焦散斑

    Figure  6.  Under action of reflected P wave: (a) blast-induced caustics patterns; (b) ellipse caustics pattern at the tip of crack C1 at 50 μs; (c) mixed Ⅰ-Ⅱ mode caustics pattern at the tip of crack C2 at 60 μs

    图  反射S波作用时:(a) 爆炸焦散斑图像,(b) t=70 μs 时C1裂纹尖端的Ⅰ-Ⅱ复合型焦散斑,(c) t=70 μs时C2裂纹尖端的Ⅰ-Ⅱ复合型焦散斑

    Figure  7.  Under action of reflected S wave: (a) blast-induced caustics patterns; (b) mixed Ⅰ-Ⅱ mode caustics pattern at the tip of crack C1 at 70 μs; (c) mixed Ⅰ-Ⅱ mode caustics pattern at the tip of crack C2 at 70 μs

    图  反射波作用后:(a) 爆炸焦散斑图像,(b) t=110 μs 时C1裂纹尖端Ⅰ型焦散斑,(c) t=120 μs 时C1裂纹尖端的Ⅰ型焦散斑

    Figure  8.  After action of reflected waves: (a) blast-induced caustics patterns; (b) mode Ⅰ caustics pattern at the tip of crack C1 at 110 μs; (c) mode Ⅰ caustics pattern at the tip of crack C1 at 120 μs

    图  定向爆炸裂纹尖端应力强度因子:(a) Ⅰ型应力强度因子K,(b) Ⅱ型应力强度因子K(RP和RS分别代表反射P波和反射S波)

    Figure  9.  Stress intensity factors of directional blast-induced cracks: (a) mode Ⅰ stress intensity factor K; (b) mode Ⅱ stress intensity factor K (RP and RS represent reflected P and S waves, respectively.)

    图  10  定向爆炸裂纹扩展结果:(a) 裂纹扩展速度,(b) 裂纹扩展速度与K的正相关性

    Figure  10.  Results of directional blast-induced crack propagation : (a) crack propagation velocity; (b) positive correlation between crack propagation velocity and K

    图  11  定向断裂爆破炮孔间距计算示意图

    Figure  11.  Schematic diagram of borehole spacing calculation for directional fracturing blasting

  • [1] 赵晓明, 杨玉民, 蒋楠, 等. 深埋引水隧洞光面爆破周边孔装药结构优化试验研究 [J]. 高压物理学报, 2022, 36(4): 045301. doi: 10.11858/gywlxb.20220503

    ZHAO X M, YANG Y M, JIANG N, et al. Optimization of charging structure of surrounding holes in smooth blasting of deep diversion tunnel [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045301. doi: 10.11858/gywlxb.20220503
    [2] 杨仁树, 李成孝, 陈骏, 等. 我国煤矿岩巷爆破掘进发展历程与新技术研究进展 [J]. 煤炭科学技术, 2023, 51(1): 224–241.

    YANG R S, LI C X, CHEN J, et al. Development history and new technology research progress of rock roadway blasting excavation in coal mines in China [J]. Coal Science and Technology, 2023, 51(1): 224–241.
    [3] 何满潮. 无煤柱自成巷开采理论与110工法 [J]. 采矿与安全工程学报, 2023, 40(5): 869–881.

    HE M C. Theory and engineering practice for non-pillars mining with automagical entry formation and 110 mining method [J]. Journal of Mining & Safety Engineering, 2023, 40(5): 869–881.
    [4] 乔国栋, 刘泽功, 高魁, 等. 切缝药包超前预裂爆破厚硬顶板矿压与瓦斯综合防治试验研究 [J]. 中国矿业大学学报, 2024, 53(2): 334–345, 376.

    QIAO G D, LIU Z G, GAO K, et al. Experimental study on the control of mine pressure and gas governance in thick and hard roof by pre-blasting of slotted cartridge [J]. Journal of China University of Mining & Technology, 2024, 53(2): 334–345, 376.
    [5] 杨国梁, 毕京九, 董智文, 等. 定向断裂控制爆破下层理页岩的致裂机理 [J]. 爆炸与冲击, 2024, 44(6): 061001.

    YANG G L, BI J J, DONG Z W, et al. Fracturing mechanism of bedding shale under directional fracture-controlled blasting [J]. Explosion and Shock Waves, 2024, 44(6): 061001.
    [6] 杨仁树, 丁晨曦, 杨立云, 等. 含缺陷PMMA介质的定向断裂控制爆破试验研究 [J]. 岩石力学与工程学报, 2017, 36(3): 690–696.

    YANG R S, DING C X, YANG L Y, et al. Experimental study on controlled directional fracture blasting on PMMA mediums with flaws [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 690–696.
    [7] 岳中文, 郭洋, 许鹏, 等. 定向断裂控制爆破爆生裂纹扩展机理的实验研究 [J]. 工程力学, 2016, 33(2): 50–58. doi: 10.6052/j.issn.1000-4750.2014.09.0816

    YUE Z W, GUO Y, XU P, et al. Controlled blasting experimental study on the mechanism of blast-induced crack propagation under directional fracture [J]. Engineering Mechanics, 2016, 33(2): 50–58. doi: 10.6052/j.issn.1000-4750.2014.09.0816
    [8] 岳中文, 郭洋, 许鹏, 等. 定向断裂控制爆破的空孔效应实验分析 [J]. 爆炸与冲击, 2015, 35(3): 304–311. doi: 10.11883/1001-1455-(2015)03-0304-08

    YUE Z W, GUO Y, XU P, et al. Analysis of empty hole effect in directional fracture controlled blasting [J]. Explosion and Shock Waves, 2015, 35(3): 304–311. doi: 10.11883/1001-1455-(2015)03-0304-08
    [9] 王雁冰, 商禹智, 石震鑫, 等. 定向断裂双孔爆破含缺陷介质裂纹扩展的动焦散试验 [J]. 爆破, 2018, 35(1): 15–20, 48. doi: 10.3963/j.issn.1001-487X.2018.01.003

    WANG Y B, SHANG Y Z, SHI Z X, et al. Dynamic caustics experiment on crack propagation in defective medium by directional breaking with double hole blasting [J]. Blasting, 2018, 35(1): 15–20, 48. doi: 10.3963/j.issn.1001-487X.2018.01.003
    [10] 许鹏, 陈程, 郭洋, 等. 含垂直层理介质在切缝药包爆破下裂纹扩展行为的试验研究 [J]. 矿业科学学报, 2019, 4(6): 498–505.

    XU P, CHEN C, GUO Y, et al. Experimental study on crack propagation of slit charge blasting in media with vertical bedding plane [J]. Journal of Mining Science and Technology, 2019, 4(6): 498–505.
    [11] 费鸿禄, 山杰, 包士杰, 等. 节理几何特征对爆破裂纹扩展的数值模拟研究 [J]. 工程爆破, 2023, 29(5): 12–21.

    FEI H L, SHAN J, BAO S J, et al. Numerical simulation study of joint geometric characteristics for explosion crack propagation [J]. Engineering Blasting, 2023, 29(5): 12–21.
    [12] 郭德勇, 张慧杰, 吕鹏飞, 等. 断层对深孔聚能爆破煤层增透的影响 [J]. 北京科技大学学报, 2014, 36(10): 1281–1286.

    GUO D Y, ZHANG H J, LYU P F, et al. Effect of fault on deep-hole cumulative blasting to improve coal bed permeability [J]. Journal of University of Science and Technology Beijing, 2014, 36(10): 1281–1286.
    [13] QIU P, YUE Z W, YANG R S, et al. Effects of vertical and horizontal reflected blast stress waves on running cracks by caustics method [J]. Engineering Fracture Mechanics, 2019, 212: 164–179.
    [14] QIU P, YUE Z W, JU Y, et al. Characterizing dynamic crack-tip stress distribution and evolution under blast gases and reflected stress waves by caustics method [J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102632.
    [15] QIU P, YUE Z W, YANG R S, et al. Modified mixed-mode caustics interpretation to study a running crack subjected to obliquely incident blast stress waves [J]. International Journal of Impact Engineering, 2021, 150: 103821.
    [16] 吴延梦, 李洪伟, 苏洪, 等. 单向围压下切槽爆破裂纹扩展规律研究 [J]. 高压物理学报, 2023, 37(6):129–139.

    WU Y M, LI H W, SU H, et al. Crack propagation law of notch blasting under unidirectional confining pressure [J]. Chinese Journal of High Pressure Physics, 2023, 37(6):129–139.
    [17] 邱鹏. 爆炸应力波与裂纹相互作用机理研究 [D]. 北京:中国矿业大学(北京), 2019.

    QIU P. Mechanisms of the interaction between blast stress waves and cracks [D]. Beijing: China University of Mining and Technology (Beijing), 2019.
    [18] THEOCARIS P S. Elastic stress intensity factors evaluated by caustics [M]//SIH G C. Experimental evaluation of stress concentration and intensity factors. Netherlands: Springer, 1981: 189–252.
    [19] PAPADOPOULOS G A. Fracture mechanics: the experimental method of caustics and the det.-criterion of fracture [M]. London: Springer-Verlag, 1993.
    [20] 李庆扬, 王能超, 易大义. 数值分析 [M]. 北京: 清华大学出版社, 2008.

    LI Q Y, WANG N C, YI D Y. Numerical analysis [M]. Beijing: Tsinghua University Press, 2008.
    [21] ANDERSON T L. Fracture mechanics: fundamentals and applications [M]. Boca Raton, FL: CRC Press, 2005.
    [22] 范天佑. 断裂动力学原理与应用 [M]. 北京: 北京理工大学出版社, 2006.

    FAN T Y. Principles and applications of fracture dynamics [M]. Beijing: Beijing Institute of Technology Press, 2006.
  • 加载中
图(11)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  35
  • PDF下载量:  13
出版历程
  • 收稿日期:  2024-04-22
  • 修回日期:  2024-05-15
  • 网络出版日期:  2024-08-29
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回