Spall Damage of Cr-Ni-Mo Steel under Shock-Release-Reloading Conditions
-
摘要: 基于一级轻气炮加载技术,利用不同类型的多层复合飞片,实现了冲击加载-卸载-再加载路径,结合回收表征以及一维流体力学模拟,对Cr-Ni-Mo钢在冲击加载-卸载-再加载路径下的层裂损伤行为进行了深入研究。结果表明,在冲击加载-卸载-再加载路径下,层裂面会重新闭合并形成微损伤带,而孔洞位置仍然位于原奥氏体边界和板条群边界处,裂纹仍保持穿晶+沿晶的混合断裂模式。此外,第1层飞片与样品之间存在的较大阻抗差异会导致自由面速度中的再加载信号缺失。这些发现为深入理解Cr-Ni-Mo钢在复杂加载路径下的层裂行为提供了重要参考。Abstract: In this work, plate-impact experiments, postmortem characterizations and one-dimensional hydrodynamic simulations were conducted to investigate the spall behavior of Cr-Ni-Mo steel under complex shock loading paths. Multi-layer flyers were utilized to generate the complex shock-release-reloading paths. Re-closed spall plane and mitigated damage zones were observed after recompression. Voids nucleate at the austenite grain boundaries and packet boundaries, which is consistent with the observations in single-shock experiments. The damage behavior is characterized by a mixed mode with both transgranular and intergranular characteristics. Moreover, notable impedance mismatch between different flyer layers can lead to the absence of reloading signal in the free surface velocity profiles. These findings can provide us insights into the spall behavior of Cr-Ni-Mo steel under complex loading conditions.
-
Key words:
- Cr-Ni-Mo steel /
- spall /
- shock loading /
- reloading /
- loading path
-
图 7 不同类型飞片加载后马氏体钢的显微组织:(a)~(c) Shot 1中样品的局部SEM照片及其对应的IPF图和KAM图,(d)~(f) Shot 2中样品的局部SEM照片及其对应的IPF图和KAM图,(g)~(i) Shot 3中样品的局部SEM照片及其对应的IPF图和KAM图
Figure 7. Microstructural characteristics of the recovered samples for different shots: (a)−(c) SEM micrograph and its IPF and KAM maps of shot 1; (d)−(f) SEM micrograph and its IPF and KAM maps of shot 2; (g)−(i) SEM micrograph and its IPF and KAM maps of shot 3
表 1 平板撞击实验参数及结果
Table 1. Parameters and results of plate-impact experiments
Shot No. Flyer df/mm ds/mm uimp/(m·s−1) σH/GPa σsp/GPa 1 Cu/PC/Ta 0.51/0.40/0.50 1.21 604 9.34 5.79 2 Ta/PC/Ta 0.50/0.39/0.50 1.20 600 12.27 5.82 3 Cu 0.50 1.19 600 9.32 5.48 表 2 Cr-Ni-Mo钢的Mie-Grüneisen状态方程参数
Table 2. Mie-Grüneisen EOS parameters for Cr-Ni-Mo steel
ρ0/(g·cm−3) c/(km·s−1) S1 γ0 S2 S3 7.78 4.69 1.49 1.93 0 0 表 3 Cr-Ni-Mo钢的Steinberg-Guinan本构模型参数
Table 3. Steinberg-Guinan constitutive model parameters for Cr-Ni-Mo steel
Y0/GPa Ymax/GPa G0/GPa β n $ {G}'_{{p}} $ $ {G}'_{{T}} $/(GPa·K−1) $ {Y}'_{{p}} $ 1.5 3 77 43 0.35 1.74 −3.5×10−3 7.7×10−3 -
[1] DU Y F, LU H H, SHEN X Q. Coupled effects of banded structure and carbide precipitation on mechanical performance of Cr-Ni-Mo-V steel [J]. Materials Science and Engineering: A, 2022, 832: 142478. doi: 10.1016/j.msea.2021.142478 [2] HAI C, ZHU Y T, FAN E D, et al. Effects of the microstructure and reversed austenite on the hydrogen embrittlement susceptibility of Ni-Cr-Mo-V/Nb high-strength steel [J]. Corrosion Science, 2023, 218: 111164. doi: 10.1016/j.corsci.2023.111164 [3] ZHAO X Y, LI H J. Experimental study on the dynamic behavior of a Cr-Ni-Mo-V steel under different shock stresses [J]. Metals, 2023, 13(4): 663. doi: 10.3390/met13040663 [4] MAROPOULOS S, RIDLEY N, KARAGIANNIS S. Structural variations in heat treated low alloy steel forgings [J]. Materials Science and Engineering: A, 2004, 380(1/2): 79–92. doi: 10.1016/j.msea.2004.03.053 [5] JONES D R, FENSIN S J, NDEFRU B G, et al. Spall fracture in additive manufactured tantalum [J]. Journal of Applied Physics, 2018, 124(22): 225902. doi: 10.1063/1.5063930 [6] ZHANG N B, XU J, FENG Z D, et al. Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi [J]. Journal of Materials Science & Technology, 2022, 128: 1–9. doi: 10.1016/j.jmst.2022.02.056 [7] 蔡洋, 李超, 卢磊. 冲击载荷下金属材料的微结构-加载特性-层裂响应关系概述 [J]. 高压物理学报, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648CAI Y, LI C, LU L. Effects of microstructure and loading characteristics on spallation of metallic materials under shock loading [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648 [8] LI C, LI B, HUANG J Y, et al. Spall damage of a mild carbon steel: effects of peak stress, strain rate and pulse duration [J]. Materials Science and Engineering: A, 2016, 660: 139–147. doi: 10.1016/j.msea.2016.02.080 [9] LI C, YANG K, TANG X C, et al. Spall strength of a mild carbon steel: effects of tensile stress history and shock-induced microstructure [J]. Materials Science and Engineering: A, 2019, 754: 461–469. doi: 10.1016/j.msea.2019.03.019 [10] LI C, HUANG J Y, TANG X C, et al. Effects of structural anisotropy on deformation and damage of a duplex stainless steel under high strain rate loading [J]. Materials Science and Engineering: A, 2017, 705: 265–272. doi: 10.1016/j.msea.2017.08.091 [11] EUSER V K, JONES D R, MARTINEZ D T, et al. The effect of microstructure on the dynamic shock response of 1045 steel [J]. Acta Materialia, 2023, 250: 118874. doi: 10.1016/j.actamat.2023.118874 [12] BECKER R, LEBLANC M M, CAZAMIAS J U. Characterization of recompressed spall in copper gas gun targets [J]. Journal of Applied Physics, 2007, 102(9): 093512. doi: 10.1063/1.2802589 [13] JONES D R, FENSIN S J, MORROW B M, et al. Shock recompaction of spall damage [J]. Journal of Applied Physics, 2020, 127(24): 245901. doi: 10.1063/5.0011337 [14] HAWKINS M C, THOMAS S A, FENSIN S J, et al. Spall and subsequent recompaction of copper under shock loading [J]. Journal of Applied Physics, 2020, 128(4): 045902. doi: 10.1063/5.0011645 [15] GRAY G T, BOURNE N K, LIVESCU V, et al. The influence of shock-loading path on the spallation response of Ta [J]. Journal of Physics: Conference Series, 2014, 500(11): 112031. doi: 10.1088/1742-6596/500/11/112031 [16] YU L, XIAO X Z, CHEN L R, et al. A hierarchical theoretical model for mechanical properties of lath martensitic steels [J]. International Journal of Plasticity, 2018, 111: 135–151. doi: 10.1016/j.ijplas.2018.07.012 [17] 李英华, 常敬臻, 张林, 等. 氦泡铝的层裂特性实验研究 [J]. 高压物理学报, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770LI Y H, CHANG J Z, ZHANG L, et al. Experimental investigation of spall damage in pure aluminum with helium bubbles [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770 [18] KANEL G I, UTKIN A V. Estimation of the spall fracture kinetics from the free-surface velocity profiles [J]. AIP Conference Proceedings, 1996, 371(1): 487–490. doi: 10.1063/1.50685 [19] ZHANG N B, LIU Q, YANG K, et al. Effects of shock-induced phase transition on spallation of a mild carbon steel [J]. International Journal of Mechanical Sciences, 2022, 213: 106858. doi: 10.1016/j.ijmecsci.2021.106858 [20] KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1/2): 173–191. doi: 10.1007/s10704-009-9438-0 [21] QI M L, BIE B X, ZHAO F P, et al. A metallography and X-ray tomography study of spall damage in ultrapure Al [J]. AIP Advances, 2014, 4(7): 077118. doi: 10.1063/1.4890310 [22] CHENG J C, QIN H L, LI C, et al. Deformation and damage of equiatomic CoCrFeNi high-entropy alloy under plate impact loading [J]. Materials Science and Engineering: A, 2023, 862: 144432. doi: 10.1016/j.msea.2022.144432 [23] 孙毅, 向士凯, 耿华运, 等. 自动校准的多相状态方程建模方法及其在锡中的应用 [J]. 高压物理学报, 2023, 37(2): 021301. doi: 10.11858/gywlxb.20220709SUN Y, XIANG S K, GENG H Y, et al. Automated calibrated modeling method of multiphase equations of states: applied to tin [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021301. doi: 10.11858/gywlxb.20220709 [24] WU F C, LI X H, SUN Y, et al. Multi-phase modeling on spall and recompression process of tin under double shockwaves [J]. The International Conference on Computational & Experimental Engineering and Sciences, 2023, 26(3): 1. doi: 10.32604/icces.2023.09320 [25] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 45–47.WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 45–47.