钙钛矿氧化物BaMO3(M为过渡金属)的晶体结构和物理性质

赵景庚

赵景庚. 钙钛矿氧化物BaMO3(M为过渡金属)的晶体结构和物理性质[J]. 高压物理学报, 2024, 38(5): 050103. doi: 10.11858/gywlxb.20240753
引用本文: 赵景庚. 钙钛矿氧化物BaMO3(M为过渡金属)的晶体结构和物理性质[J]. 高压物理学报, 2024, 38(5): 050103. doi: 10.11858/gywlxb.20240753
ZHAO Jinggeng. Crystal Structure and Physica Properties of Perovskite Oxide BaMO3 (M Being Transition Metal)[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050103. doi: 10.11858/gywlxb.20240753
Citation: ZHAO Jinggeng. Crystal Structure and Physica Properties of Perovskite Oxide BaMO3 (M Being Transition Metal)[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050103. doi: 10.11858/gywlxb.20240753

钙钛矿氧化物BaMO3(M为过渡金属)的晶体结构和物理性质

doi: 10.11858/gywlxb.20240753
基金项目: 国家自然科学基金(12074093)
详细信息
    作者简介:

    赵景庚(1980–),男,博士,副教授,主要从事高压凝聚态物理研究. E-mail:zhaojg@hit.edu.cn

  • 中图分类号: O521.2

Crystal Structure and Physica Properties of Perovskite Oxide BaMO3 (M Being Transition Metal)

  • 摘要: 钙钛矿氧化物BaMO3(M为过渡族金属)具有复杂的晶体结构和物理性质,本文系统地总结了BaMO3的研究进展,重点关注在 M 元素变化过程中晶体结构和物理性质的演化,以及高压调控下的结构相变、电输运性质和磁学性质的变化,讨论了M离子半径及合成压力对六方钙钛矿到钙钛矿演化过程的影响,同时对该领域中一些问题做了展望,探讨了这一体系可能出现的新的原子组合和结构,相应材料可能具有的新特性和科学意义。

     

  • 图  (a) 立方和(b) 正交钙钛矿的晶体结构示意图

    Figure  1.  Schematic views of the crystallographic forms of (a) cubic and (b) orthorhombic perovskite

    图  BX6八面体(a)共顶点连接和(b)共面连接时A-X配位示意图

    Figure  2.  Schematic views of A-X coordinations while BX6 octahedrons are connected by (a) vertex and (b) plane

    图  (a) 6H-BaMO3的晶体结构示意图,(b) BaTiO3的温度-压力相图[6]

    Figure  3.  (a) Schematic views of crystal structure of 6H-BaMO3; (b) temperature-pressure phase diagram of BaTiO3[6]

    图  (a) 5H-BaMO3和(b) 14H-BaMO3的晶体结构示意图

    Figure  4.  Schematic views of crystal structure of (a) 5H-BaMO3 and (b) 14H-BaMO3

    图  5H-BaVO3的(a) ρ-T曲线和(b) χ-T曲线[7]

    Figure  5.  (a) ρ-T and (b) χ-T curves of the 5H-BaVO3[7]

    图  3C-BaVO3的(a) ρ-T和(b) χ-T曲线[8]

    Figure  6.  (a) ρ-T and (b) χ-T curves of the 3C-BaVO3[8]

    图  BaCrO3的压力-温度相图[10]

    Figure  7.  Pressure-temperature phase diagram of BaCrO3[10]

    图  (a) 4H-BaMO3、(b) 12R-BaMO3和(c) 27R-BaMO3的晶体结构示意图

    Figure  8.  Schematic diagram of crystal structure of (a) 4H-BaMO3, (b) 12R-BaMO3, and (c) 27R-BaMO3

    图  5H-BaCrO2.8χ-T曲线[10]

    Figure  9.  χ-T curve of the 5H-BaCrO2.8[10]

    图  10  6H-BaCrO3的(a) χ-T曲线、(b) 磁滞回线和(c) 磁结构[16]

    Figure  10.  (a) χ-T curves, (b) magnetic hysteresis loops and (c) magnetic structure of the 6H-BaCrO3[16]

    图  11  (a) 2H-BaMO3、(b) 9R-BaMO3、(c) 6H'-BaMO3、(d) 8H-BaMO3、(e) 10H-BaMO3、(f) 15R-BaMO3和(g) 21R-BaMO3的晶体结构示意图

    Figure  11.  Schematic diagrams of crystal structures of (a) 2H-BaMO3, (b) 9R-BaMO3, (c) 6H'-BaMO3, (d) 8H-BaMO3, (e) 10H-BaMO3, (f) 15R-BaMO3, and (g) 21R-BaMO3

    图  12  (a) 2H-BaMnO3[17]、(b) 4H-BaMnO3[22]、(c) 6H-BaMnO3[22]和(d) 15R-BaMnO3[26]χ-T曲线

    Figure  12.  χ-T curves of (a) 2H-BaMnO3[17], (b) 4H-BaMnO3[22], (c) 6H-BaMnO3[22], and (d) 15R-BaMnO3[26]

    图  13  (a) “12R”-BaMO3和(b) 12M-BaMO3的晶体结构示意图

    Figure  13.  Schematic diagram of crystal structure of(a) “12R”-BaMO3 and (b) 12M-BaMO3

    图  14  (a) 6H-BaFeO3[31]和(b) 12M-BaFeO3[34]χ-T曲线,(c) 12M-BaFeO3的磁结构[34]

    Figure  14.  χ-T curves of (a) 6H-BaFeO3[31] and (b) 12M-BaFeO3[34], (c) magnetic structure of the 12M-BaFeO3[34]

    图  15  (a) 多晶[36]和(b) 单晶[37]3C-BaFeO3χ-T曲线

    Figure  15.  χ-T curves of (a) polycrystalline[36] and (b) monocrystalline[37] 3C-BaFeO3

    图  16  (a) 2H'-BaMO3、(b) 12H-BaMO3和(c) 3C'-BaMO3的晶体结构示意图

    Figure  16.  Schematic diagram of crystal structure of (a) 2H'-BaMO3, (b) 12H-BaMO3, and (c) 3C'-BaMO3

    图  17  2H-BaCoO3单晶体的(a) ρ-T曲线和(b) χ-T曲线[40]

    Figure  17.  (a) ρ-T and (b) χ-T curves of the 2H-BaCoO3 single crystal[40]

    图  18  9R-BaRuO3、4H-BaRuO3和6H-BaRuO3的(a) ρ-T曲线和(b) χ-T曲线((b)中的黑实线是利用式(4)拟合的结果)[54]

    Figure  18.  (a) ρ-T and (b) χ-T curves of the 9R-BaRuO3, 4H-BaRuO3, and 6H-BaRuO3(The solid lines in (b) are the fit to data using Eq. (4).) [54]

    图  19  3C-BaRuO3的(a) ρ-T曲线和(b) χ-T曲线[55]

    Figure  19.  (a) ρ-T and (b) χ-T curves of the 3C-BaRuO3[55]

    图  20  3C-BaRuO3TCn随压力的变化关系[57]

    Figure  20.  Relations of TC and n versus pressure of 3C-BaRuO3[57]

    图  21  (a) 9M-BaMO3、(b) 5M-BaMO3、(c) 6M-BaMO3和(d) 四方钙钛矿BaMO3的晶体结构示意图

    Figure  21.  Schematic views of the crystal structure of (a) 9M-BaMO3, (b) 5M-BaMO3,(c) 6M-BaMO3, and (d) tetragonal perovskite BaMO3

    图  22  9M-BaIrO3、5M-BaIrO3和6M-BaIrO3的(a) ρ-T曲线、(b) χ-T曲线和(c) 磁滞回线[64]

    Figure  22.  (a) ρ-T curves, (b) χ-T curves and (c) magnetic hysteresis loops of 9M-BaIrO3, 5M-BaIrO3, and 6M-BaIrO3[64]

    图  23  9M-BaIrO3在不同压力下的(a) ρ-T曲线[67]和(b) χ-T曲线[68]

    Figure  23.  (a) ρ-T[67] and (b) χ-T[68] curves of 9M-BaIrO3 under different pressures

    图  24  3C-BaIrO3的(a) ρ-T曲线和(b) χ-T曲线[63]

    Figure  24.  (a) ρ-T and (b) χ-T curves of 3C-BaIrO3[63]

    图  25  4H-BaRhO3和6M-BaRhO3的(a) χ-T曲线和(b) ρ-T曲线[71]

    Figure  25.  (a) χ-T and (b) ρ-T curves of the 4H-BaRhO3 and 6M-BaRhO3[71]

    图  26  BaMO3(M为过渡金属离子)的多层堆积变体

    Figure  26.  Multi-layer stacked variants of BaMO3 (M is a transition metal)

    图  27  BaMO3(M = V, Cr, Mn, Ru, Os, Rh, Ir)在不同合成压力范围内的多层堆积变体

    Figure  27.  Multi-layer stacked variants of BaMO3 (M = V, Cr, Mn, Ru, Os, Rh, Ir) in different synthetic pressures

    图  28  BaMO3中MO6八面体连接情况随合成压力的演化

    Figure  28.  Evolution of MO6 octahedron’s connectivity in BaMO3 with synthetic pressure

    图  29  BaMO3的(a) 每个化学式的晶胞体积V/Z、(b) 近邻多聚体之间的M-M距离dM-M、(c) 轴比率(c/a)/N、(d) 多聚体内M-M之间的距离${d'_{{\text{M-M}}}} $,(e) Ba-O之间的平均距离${\bar d_{{\text{Ba-O}}}}$和(f) M-O之间的平均距离${\bar d_{{\text{M-O}}}}$随M离子半径的变化关系

    Figure  29.  Relations of (a) volume per chemical formula V/Z, (b) M-M distance between neighbour polymers dM-M,(c) axis ratio (c/a)/N, (d) M-M distance in one polymer ${d'_{{\text{M-M}}}} $; (e) average distance of Ba-O ${\bar d_{{\text{Ba-O}}}}$; (f) average distance of M-O ${\bar d_{{\text{M-O}}}}$ versus M ion radius of BaMO3

    图  30  BaMO3的“容忍因子”t'随M离子半径的变化关系

    Figure  30.  Relationship of “tolerance factor” t' versus M ion radius of BaMO3

    图  31  BaMO3的(a) 剩余电阻率ρ0和(b) 剩余电阻比率rRRR

    Figure  31.  (a) Residual resistivity ρ0 and (b) residual resistivity ratio rRRR of BaMO3

    图  32  BaMO3的(a) 磁有序温度(TNTC)和(b) 顺磁有效磁矩(μeff)

    Figure  32.  (a) Magnetic order temperature (TN, TC ) and (b) paramagnetic effective magnetic moment (μeff) of BaMO3

  • [1] GOLDSCHMIDT V M. Die gesetze der krystallochemie [J]. Naturwissenschaften, 1926, 14(21): 477–485. doi: 10.1007/BF01507527
    [2] GLAZER A M. The classification of tilted octahedra in perovskites [J]. Acta Crystallographica Section B, 1972, 28(11): 3384–3392. doi: 10.1107/S0567740872007976
    [3] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A, 1976, 32(5): 751–767. doi: 10.1107/S0567739476001551
    [4] NGUYEN L T, CAVA R J. Hexagonal perovskites as quantum materials [J]. Chemical Reviews, 2021, 121(5): 2935–2965. doi: 10.1021/acs.chemrev.0c00622
    [5] AKIMOTO J, GOTOH Y, OSAWA Y. Refinement of hexagonal BaTiO3 [J]. Acta Crystallographica Section C, 1994, 50(2): 160–161.
    [6] HAYWARD S A, REDFERN S A T, STONE H J, et al. Phase transitions in BaTiO3: a high-pressure neutron diffraction study [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(8): 735–739.
    [7] LIU G, GREEDAN J E. Syntheses, structures, and characterization of 5-layer BaVO3− x (x = 0.2, 0.1, 0.0) [J]. Journal of Solid State Chemistry, 1994, 110(2): 274–289. doi: 10.1006/jssc.1994.1170
    [8] NISHIMURA K, YAMADA I, OKA K, et al. High-pressure synthesis of BaVO3: a new cubic perovskite [J]. Journal of Physics and Chemistry of Solids, 2014, 75(6): 710–712. doi: 10.1016/j.jpcs.2014.02.001
    [9] CHAMBERLAND B L, DANIELSON P S. Alkaline-earth vanadium (Ⅳ) oxides having the AVO3 composition [J]. Journal of Solid State Chemistry, 1971, 3(2): 243–247. doi: 10.1016/0022-4596(71)90035-1
    [10] ARÉVALO-LÓPEZ A M, ATTFIELD J P. High-pressure BaCrO3 polytypes and the 5H-BaCrO2.8 phase [J]. Journal of Solid State Chemistry, 2015, 232: 236–240. doi: 10.1016/j.jssc.2015.09.029
    [11] CHAMBERLAND B L. Crystal structure of the 4H BaCrO3 polytype [J]. Journal of Solid State Chemistry, 1982, 43(3): 309–313. doi: 10.1016/0022-4596(82)90245-6
    [12] CHAMBERLAND B L. Crystal structure of the 6H BaCrO3 polytype [J]. Journal of Solid State Chemistry, 1983, 48(3): 318–322. doi: 10.1016/0022-4596(83)90088-9
    [13] CHAMBERLAND B L. Preparation and crystallographic properties of barium chromate (Ⅳ) polytypes [J]. Inorganic Chemistry, 1969, 8(2): 286–290. doi: 10.1021/ic50072a021
    [14] CHAMBERLAND B L, KATZ L. The structure of the fourteen-layer polytype of barium chromium trioxide, BaCrO3 [J]. Acta Crystallographica Section B, 1982, 38(1): 54–57. doi: 10.1107/S0567740882002039
    [15] HARADEM P S, CHAMBERLAND B L, KATZ L. The structure of the 27-layer polytype of BaCrO3 [J]. Journal of Solid State Chemistry, 1980, 34(1): 59–64. doi: 10.1016/0022-4596(80)90403-X
    [16] ARÉVALO-LÓPEZ A M, REEVES S J, ATTFIELD J P. Ferrimagnetism in the high pressure 6H-perovskite BaCrO3 [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2014, 640(14): 2727–2729.
    [17] CUSSEN E J, BATTLE P D. Crystal and magnetic structures of 2H BaMnO3 [J]. Chemistry of Materials, 2000, 12(3): 831–838. doi: 10.1021/cm991144j
    [18] SYONO Y, AKIMOTO S I, KOHN K. Structure relations of hexagonal perovskite-like compounds ABX3 at high pressure [J]. Journal of the Physical Society of Japan, 1969, 26(4): 993–999. doi: 10.1143/JPSJ.26.993
    [19] CHRISTENSEN A N, OLLIVIER G. Hydrothermal and high-pressure preparation of some BaMnO3 modifications and low-temperature magnetic properties of BaMnO3(2H) [J]. Journal of Solid State Chemistry, 1972, 4(1): 131–137. doi: 10.1016/0022-4596(72)90141-7
    [20] BOULLAY P, HERVIEU M, LABBÉ P, et al. Single crystal and HREM study of the “Bi-Sr” stabilized BaMnO3 9R polytype [J]. Materials Research Bulletin, 1997, 32(1): 35–42. doi: 10.1016/S0025-5408(96)00169-9
    [21] HARDY A. Structures cristallines de deux variétés allotropiques de manganite de baryum. Nouvelle structure ABO3 [J]. Acta Crystallographica, 1962, 15(3): 179–181. doi: 10.1107/S0365110X6200047X
    [22] QIN S J, CHIN Y Y, ZHOU B W, et al. High-pressure synthesis and magnetism of the 4H-BaMnO3 single crystal and its 6H-type polymorph [J]. Inorganic Chemistry, 2021, 60(21): 16308–16315. doi: 10.1021/acs.inorgchem.1c02155
    [23] ADKIN J J, HAYWARD M A. BaMnO3− x revisited: a structural and magnetic study [J]. Chemistry of Materials, 2007, 19(4): 755–762. doi: 10.1021/cm062055r
    [24] POTOFF A D, CHAMBERLAND B L, KATZ L. A single crystal study of eight-layer barium managanese oxide, BaMnO3 [J]. Journal of Solid State Chemistry, 1973, 8(3): 234–237. doi: 10.1016/0022-4596(73)90090-X
    [25] PARRAS M, GONZÁLEZ-CALBET J M, ALONSO J, et al. Microstructural characterization of BaMnO3− y (0.08 ≤ y ≤ 0.12): evidence for a new polytype (21R) [J]. Journal of Solid State Chemistry, 1994, 113(1): 78–87. doi: 10.1006/jssc.1994.1344
    [26] POOJITHA B, RATHORE A, KUMAR A, et al. Signatures of magnetostriction and spin-phonon coupling in magnetoelectric hexagonal 15R-BaMnO3 [J]. Physical Review B, 2020, 102(13): 134436. doi: 10.1103/PhysRevB.102.134436
    [27] KORNETA O B, QI T F, GE M, et al. Correlated giant dielectric peaks and antiferromagnetic transitions near room temperature in pure and alkali-doped BaMnO3-δ [J]. Journal of Physics: Condensed Matter, 2011, 23(43): 435901. doi: 10.1088/0953-8984/23/43/435901
    [28] GONZÁLEZ-CALBET J M, PARRAS M, ALONSO J, et al. Prediction of novel BaMnO3− y (0 < y < 0.1) perovskite related phases [J]. Journal of Solid State Chemistry, 1994, 111(1): 202–207. doi: 10.1006/jssc.1994.1218
    [29] PARRAS M, VALLET-REGI M, GONZALEZ-CALBET J M, et al. A reassessment of Ba2Fe2O5 [J]. Materials Research Bulletin, 1987, 22(10): 1413–1419. doi: 10.1016/0025-5408(87)90306-0
    [30] MORI K, KAMIYAMA T, KOBAYASHI H, et al. Structural evidence for the charge disproportionation of Fe4+ in BaFeO3−δ [J]. Journal of the Physical Society of Japan, 2003, 72(8): 2024–2028. doi: 10.1143/JPSJ.72.2024
    [31] MORI K, KAMIYAMA T, KOBAYASHI H, et al. Mixed magnetic phase in 6H-type BaFeO3− δ [J]. Journal of Applied Crystallography, 2007, 40(Suppl 1): s501–s505. doi: 10.1107/S0021889807001653
    [32] GÓMEZ M I, LUCOTTI G, DE MORÁN J A, et al. Ab initio structure solution of BaFeO2.8− δ, a new polytype in the system BaFeO y (2.5 ≤ y ≤ 3.0) prepared from the oxidative thermal decomposition of BaFe[(CN)5NO]·3H2O [J]. Journal of Solid State Chemistry, 2001, 160(1): 17–24. doi: 10.1006/jssc.2001.9119
    [33] PARRAS M, VALLETREGI M, GONZALEZCALBET J M, et al. A structural study of 12H-BaFeO2.93 [J]. European Journal of Solid State and Inorganic Chemistry, 1989, 26(3): 299–312.
    [34] TAN Z H, ROMERO F D, SAITO T, et al. Charge disproportionation and interchange transitions in twelve-layer BaFeO3 [J]. Physical Review B, 2020, 102(5): 054404. doi: 10.1103/PhysRevB.102.054404
    [35] HAYASHI N, YAMAMOTO T, KAGEYAMA H, et al. BaFeO3: a ferromagnetic iron oxide [J]. Angewandte Chemie International Edition, 2011, 50(52): 12547–12550.
    [36] MIZUMAKI M, YOSHII K, HAYASHI N, et al. Magnetocaloric effect of field-induced ferromagnet BaFeO3 [J]. Journal of Applied Physics, 2013, 114(7): 073901. doi: 10.1063/1.4818316
    [37] LIU Y X, LIU Z H, LI Z, et al. Multiple magnetic transitions and electrical transport transformation of a BaFeO3 cubic perovskite single crystal [J]. Physical Review B, 2020, 101(14): 144421. doi: 10.1103/PhysRevB.101.144421
    [38] STRAUSS S W, FANKUCHEN I, WARD R. Barium cobalt oxide of the perowskite type [J]. Journal of the American Chemical Society, 1951, 73(11): 5084–5086. doi: 10.1021/ja01155a019
    [39] TAGUCHI H, TAKEDA Y, KANAMARU F, et al. Cobalt trioxide [J]. Acta Crystallographica Section B, 1977, 33(4): 1298–1299. doi: 10.1107/S0567740877005937
    [40] WANG H D, YANG J H, DONG C H, et al. Crystal growth and characterization of the quasi-one-dimensional compound BaCoO3 [J]. Journal of Crystal Growth, 2015, 430: 52–54. doi: 10.1016/j.jcrysgro.2015.08.010
    [41] SUGIYAMA J, NOZAKI H, BREWER J H, et al. Appearance of a two-dimensional antiferromagnetic order in quasi-one-dimensional cobalt oxides [J]. Physical Review B, 2005, 72(6): 064418. doi: 10.1103/PhysRevB.72.064418
    [42] NOZAKI H, JANOSCHEK M, ROESSLI B, et al. Neutron diffraction and μSR study on the antiferromagnet BaCoO3 [J]. Physical Review B, 2007, 76(1): 014402. doi: 10.1103/PhysRevB.76.014402
    [43] BOTTA P M, PARDO V, BALDOMIR D, et al. Dynamic magnetic behavior of BaCoO3 quasi-one-dimensional perovskite [J]. Physical Review B, 2006, 74(21): 214415. doi: 10.1103/PhysRevB.74.214415
    [44] WANG H Z, XU X H, NI D R, et al. Impersonating a superconductor: high-pressure BaCoO3, an insulating ferromagnet [J]. Journal of the American Chemical Society, 2023, 145(39): 21203-21206.
    [45] JACOBSON A J, HUTCHISON J L. An investigation of the structure of 12H BaCoO2.6 by electron microscopy and powder neutron diffraction [J]. Journal of Solid State Chemistry, 1980, 35(3): 334–340. doi: 10.1016/0022-4596(80)90530-7
    [46] PARRAS M, VARELA A, SEEHOFER H, et al. HREM study of the BaCoO3− y system: evidence for a new 5H phase [J]. Journal of Solid State Chemistry, 1995, 120(2): 327–331. doi: 10.1006/jssc.1995.1416
    [47] MENTRÉ O, IORGULESCU M, HUVÉ M, et al. BaCoO2.22: the most oxygen-deficient certified cubic perovskite [J]. Dalton Transactions, 2015, 44(23): 10728–10737.
    [48] LANDER J J. The crystal structures of NiO·BaO3, NiO·BaO, BaNiO3 and intermediate phases with composition near Ba2Ni2O5, with a note on NiO [J]. Acta Crystallographica, 1951, 4(2): 148–156. doi: 10.1107/S0365110X51000441
    [49] TAKEDA Y, SHIMADA M, KANAMARU F, et al. Preparation and magnetic property of BaNiO3 single crystals [J]. Chemistry Letters, 1974, 3(2): 107–108. doi: 10.1246/cl.1974.107
    [50] DONOHUE P C, KATZ L, WARD R. The crystal structure of barium ruthenium oxide and related compounds [J]. Inorganic Chemistry, 1965, 4(3): 306–310. doi: 10.1021/ic50025a010
    [51] RAO M V R, SATHE V G, SORNADURAI D, et al. Electronic structure of ARuO3 (A = Ca, Sr and Ba) compounds [J]. Journal of Physics and Chemistry of Solids, 2001, 62(4): 797–806. doi: 10.1016/S0022-3697(00)00262-6
    [52] HONG S T, SLEIGHT A W. Crystal structure of 4H BaRuO3: high pressure phase prepared at ambient pressure [J]. Journal of Solid State Chemistry, 1997, 128(2): 251–255.
    [53] RIJSSENBEEK J T, JIN R, ZADOROZHNY Y, et al. Electrical and magnetic properties of the two crystallographic forms of BaRuO3 [J]. Physical Review B, 1999, 59(7): 4561–4564. doi: 10.1103/PhysRevB.59.4561
    [54] ZHAO J G, YANG L X, YU Y, et al. Structural and physical properties of the 6H BaRuO3 polymorph synthesized under high pressure [J]. Journal of Solid State Chemistry, 2007, 180(10): 2816–2823. doi: 10.1016/j.jssc.2007.07.031
    [55] JIN C Q, ZHOU J S, GOODENOUGH J B, et al. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(20): 7115–7119.
    [56] OGAWA T, SATO H. New ternary barium ruthenates: 10H-type BaRuO3 and Ba2Ru7O18 [J]. Journal of Alloys and Compounds, 2004, 383(1/2): 313–318.
    [57] ZHOU J S, MATSUBAYASHI K, UWATOKO Y, et al. Critical behavior of the ferromagnetic perovskite BaRuO3 [J]. Physical Review Letters, 2008, 101(7): 077206. doi: 10.1103/PhysRevLett.101.077206
    [58] NEUMEIER J J, CORNELIUS A L, SCHILLING J S. Influence of pressure on the ferromagnetic transition temperature of SrRuO3 [J]. Physica B: Condensed Matter, 1994, 198(4): 324–328.
    [59] SIEGRIST T, CHAMBERLAND B L. The crystal structure of BaIrO3 [J]. Journal of the Less Common Metals, 1991, 170(1): 93–99. doi: 10.1016/0022-5088(91)90054-8
    [60] CHENG J G, ALONSO J A, SUARD E, et al. A new perovskite polytype in the high-pressure sequence of BaIrO3 [J]. Journal of the American Chemical Society, 2009, 131(21): 7461–7469.
    [61] ZHAO J G, YANG L X, YU Y, et al. Physical properties of the 5M BaIrO3: a new weak ferromagnetic iridate synthesized under high pressure [J]. Solid State Communications, 2010, 150(1): 36–39.
    [62] ZHAO J G, YANG L X, YU Y, et al. Structural and physical properties of the 6M BaIrO3: a new metallic iridate synthesized under high pressure [J]. Inorganic Chemistry, 2009, 48(10): 4290–4294.
    [63] CHENG J G, ISHII T, KOJITANI H, et al. High-pressure synthesis of the BaIrO3 perovskite: a Pauli paramagnetic metal with a Fermi liquid ground state [J]. Physical Review B, 2013, 88(20): 205114. doi: 10.1103/PhysRevB.88.205114
    [64] CHENG J G, ZHOU J S, ALONSO J A, et al. Transition from a weak ferromagnetic insulator to an exchange-enhanced paramagnetic metal in the BaIrO3 polytypes [J]. Physical Review B, 2009, 80(10): 104430. doi: 10.1103/PhysRevB.80.104430
    [65] CAO G, CROW J E, GUERTIN R P, et al. Charge density wave formation accompanying ferromagnetic ordering in quasi-one-dimensional BaIrO3 [J]. Solid State Communications, 2000, 113(11): 657–662. doi: 10.1016/S0038-1098(99)00532-3
    [66] POWELL A V, BATTLE P D. The electronic properties of non-stoichiometric barium iridate, BaIrO3− δ [J]. Journal of Alloys and Compounds, 1993, 191(2): 313–318. doi: 10.1016/0925-8388(93)90085-2
    [67] ZHAO J G, YANG L X, MYDEEN K, et al. Effects of pressure on electrical property of BaIrO3 [J]. Solid State Communications, 2008, 148(9/10): 361–364.
    [68] KIDA T, SENDA A, YOSHII S, et al. Pressure effect on magnetic properties of a weak ferromagnet BaIrO3 [J]. Journal of Physics: Conference Series, 2010, 200(1): 012084. doi: 10.1088/1742-6596/200/1/012084
    [69] SIEGRIST T, LARSON E M, CHAMBERLAND B L. Structural studies of high-pressure Ba-Rh-O phases [J]. Journal of Alloys and Compounds, 1994, 210(1/2): 13–17.
    [70] CHAMBERLAND B L, ANDERSON J B. The preparation and crystal structure of a BaRhO3 polytype [J]. Journal of Solid State Chemistry, 1981, 39(1): 114–119. doi: 10.1016/0022-4596(81)90309-1
    [71] INJAC S D A, XU Y H, ROMERO F D, et al. Pauli-paramagnetic and metallic properties of high pressure polymorphs of BaRhO3 oxides containing Rh2O9 dimers [J]. Dalton Transactions, 2021, 50(13): 4673–4679. doi: 10.1039/D1DT00502B
    [72] MEGAW H D. Crystal structure of double oxides of the perovskite type [J]. Proceedings of the Physical Society, 1946, 58(2): 133–152. doi: 10.1088/0959-5309/58/2/301
    [73] KOPNIN E M, ISTOMIN S Y, D’YACHENKO O G, et al. Synthesis, structure, and resistivity properties of K1− xBa xNbO3 (0.2 ≤ x ≤ 0.5) and K0.5Sr0.5NbO3 [J]. Materials Research Bulletin, 1995, 30(11): 1379–1386. doi: 10.1016/0025-5408(95)00117-4
    [74] CASAIS M T, ALONSO J A, RASINES I, et al. Preparation, neutron structural study and characterization of BaNbO3: a Pauli-like metallic perovskite [J]. Materials Research Bulletin, 1995, 30(2): 201–208.
    [75] BRIXNER L H. X-ray study and electrical properties of system Ba xSr1− xMoO3 [J]. Journal of Inorganic and Nuclear Chemistry, 1960, 14(3/4): 225–230.
    [76] SCHOLDER R, RÄDE D, SCHWARZ H. Über zirkonate, hafnate und thorate von barium, strontium, lithium und natrium [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1968, 362(3/4): 149–168.
    [77] MULLER O, WHITE W B, ROY R. Crystal chemistry of some technetium-containing oxides [J]. Journal of Inorganic and Nuclear Chemistry, 1964, 26(12): 2075–2086. doi: 10.1016/0022-1902(64)80152-4
    [78] SARKOZY R F, CHAMBERLAND B L. The preparation of several new ternary oxides of osmium [J]. Materials Research Bulletin, 1973, 8(12): 1351–1359. doi: 10.1016/0025-5408(73)90019-6
    [79] CHAMBERLAND B L. Solid state preparations and reactions of ternary alkaline-earth osmium oxides [J]. Materials Research Bulletin, 1978, 13(12): 1273–1280. doi: 10.1016/0025-5408(78)90117-4
    [80] SHI Y G, GUO Y F, SHIRAKO Y, et al. High-pressure synthesis of 5d cubic perovskite BaOsO3 at 17 GPa: ferromagnetic evolution over 3d to 5d series [J]. Journal of the American Chemical Society, 2013, 135(44): 16507–16516. doi: 10.1021/ja4074408
    [81] GALLAGHER P K, JOHNSON JR D W, VOGEL E M, et al. Synthesis and structure of BaPtO3 [J]. Journal of Solid State Chemistry, 1977, 21(4): 277–282. doi: 10.1016/0022-4596(77)90126-8
    [82] CASAPU M, GRUNWALDT J D, MACIEJEWSKI M, et al. Enhancement of activity and self-reactivation of NSR-catalysts by temporary formation of BaPtO3-perovskite [J]. Catalysis Letters, 2008, 120(1/2): 1–7.
    [83] YAMAMOTO T, SHITARA K, KITAGAWA S, et al. Selective hydride occupation in BaVO3− xH x (0.3 ≤ x ≤ 0.8) with face and corner-shared octahedra [J]. Chemistry of Materials, 2018, 30(5): 1566–1574. doi: 10.1021/acs.chemmater.7b04571
    [84] YUSA H, SATA N, OHISHI Y. Rhombohedral (9R) and hexagonal (6H) perovskites in barium silicates under high pressure [J]. American Mineralogist, 2007, 92(4): 648–654.
    [85] HIRAMATSU H, YUSA H, IGARASHI R, et al. An exceptionally narrow band-gap (~4 eV) silicate predicted in the cubic perovskite structure: BaSiO3 [J]. Inorganic Chemistry, 2017, 56(17): 10535–10542. doi: 10.1021/acs.inorgchem.7b01510
    [86] 谢亚飞, 姜昌国, 罗兴丽, 等. 6H型六方钙钛矿相BaGeO3 的高温高压合成 [J]. 高压物理学报, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761

    XIE Y F, JIANG C G, LUO X L, et al. Synthesis of 6H-type hexagonal perovskite phase of BaGeO3 at high temperature and high pressure [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761
    [87] LONGO J M, KAFALAS J A. Pressure-induced structural changes in the system Ba1− xSr xRuO3 [J]. Materials Research Bulletin, 1968, 3(8): 687–692.
    [88] ZHAO J G, YANG L X, YU Y, et al. High-pressure synthesis of orthorhombic SrIrO3 perovskite and its positive magnetoresistance [J]. Journal of Applied Physics, 2008, 103(10): 103706. doi: 10.1063/1.2908879
    [89] CAO G, BOLIVAR J, MCCALL S, et al. Weak ferromagnetism, metal-to-nonmetal transition, and negative differential resistivity in single-crystal Sr2IrO4 [J]. Physical Review B, 1998, 57(18): R11039–R11042. doi: 10.1103/PhysRevB.57.R11039
    [90] CAO G, XIN Y, ALEXANDER C S, et al. Anomalous magnetic and transport behavior in the magnetic insulator Sr3Ir2O7 [J]. Physical Review B, 2002, 66(21): 214412. doi: 10.1103/PhysRevB.66.214412
  • 加载中
图(32)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  57
  • PDF下载量:  32
出版历程
  • 收稿日期:  2024-03-15
  • 修回日期:  2024-04-21
  • 录用日期:  2024-04-22
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回