挤压/冲击工况下圆柱形锂离子电池失效的影响因素分析

顾丽蓉 王敬德 张新春 黄子轩 齐文睿 张英杰

顾丽蓉, 王敬德, 张新春, 黄子轩, 齐文睿, 张英杰. 挤压/冲击工况下圆柱形锂离子电池失效的影响因素分析[J]. 高压物理学报, 2024, 38(4): 045301. doi: 10.11858/gywlxb.20240708
引用本文: 顾丽蓉, 王敬德, 张新春, 黄子轩, 齐文睿, 张英杰. 挤压/冲击工况下圆柱形锂离子电池失效的影响因素分析[J]. 高压物理学报, 2024, 38(4): 045301. doi: 10.11858/gywlxb.20240708
GU Lirong, WANG Jingde, ZHANG Xinchun, HUANG Zixuan, QI Wenrui, ZHANG Yingjie. Analysis of Influencing Factors of Failure for Cylindrical Lithium-Ion Batteries under Compression/Impact Conditions[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045301. doi: 10.11858/gywlxb.20240708
Citation: GU Lirong, WANG Jingde, ZHANG Xinchun, HUANG Zixuan, QI Wenrui, ZHANG Yingjie. Analysis of Influencing Factors of Failure for Cylindrical Lithium-Ion Batteries under Compression/Impact Conditions[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045301. doi: 10.11858/gywlxb.20240708

挤压/冲击工况下圆柱形锂离子电池失效的影响因素分析

doi: 10.11858/gywlxb.20240708
基金项目: 河北省自然科学基金(A2020502005);保定市基础研究专项(2372P018);河北省电力工程监理有限公司项目(SGTYHT/21-JS-223)
详细信息
    作者简介:

    顾丽蓉(2001-),女,硕士研究生,主要从事锂离子电池的模型预测及失效机理研究. E-mail:gulirongy@163.com

    通讯作者:

    张新春(1980-),男,博士,副教授,主要从事冲击动力学和新能源电池研究. E-mail:xczhang@ncepu.edu.cn

  • 中图分类号: O347; TM912.9

Analysis of Influencing Factors of Failure for Cylindrical Lithium-Ion Batteries under Compression/Impact Conditions

  • 摘要: 锂离子电池在受到挤压、冲击载荷时会发生内部短路而引发热失控,因此,研究电池失效影响因素对电池结构耐撞性设计具有重要意义。以圆柱形锂离子电池为研究对象,利用自制的平面压缩和局部压痕实验系统,研究不同挤压/冲击工况下锂离子电池的力-电-热响应,并与有限元模拟结果进行对比分析,结果表明,实验与有限元模拟结果具有较好的一致性。基于显式非线性有限元方法,研究了加载速度、压头形状和压头直径对锂离子电池失效行为和力学响应的影响。研究表明:局部压痕相较于平面压缩更容易导致锂离子电池失效;随着压头直径的减小,电池的峰值力显著降低,失效位移相应减小;失效位移随着冲击速度的增加而增大,但当冲击速度超过15 m/s时,失效位移开始减小。研究结果将对锂离子电池的耐撞性多目标优化设计和安全性评估提供一定的指导。

     

  • 图  实验过程示意图

    Figure  1.  Schematic diagram of the experimental process

    图  电池内芯材料的应力-应变曲线 (a)、NCR18650圆柱形锂离子电池实物 (b) 及有限元模型 (c)

    Figure  2.  (a) Stress-strain curves of battery inner core, (b) NCR18650 cylindrical lithium-ion battery and (c) finite element model

    图  局部压痕下有限元模拟与实验结果对比

    Figure  3.  Comparison of finite element simulation and experimental results under local indentation

    图  不同挤压载荷下的力-电压-温度曲线

    Figure  4.  Force-voltage-temperature curves under different compression loadings

    图  不同压头形状下锂离子电池的力-位移曲线

    Figure  5.  Force-displacement curves of lithium-ion battery under different indenter shapes

    图  不同挤压速度下锂离子电池的失效位移和失效峰值力

    Figure  6.  Failure displacement and failure peak force of lithium-ion battery under different compression velocities

    图  不同压头直径下锂离子电池的力-位移曲线

    Figure  7.  Force-displacement curves of lithium-ion battery under different indenter diameters

    图  不同冲击速度下锂离子电池的力-位移曲线及应力云图

    Figure  8.  Force-displacement curves and stress contours of lithium-ion battery under different impact velocities

    图  不同形状冲头下电池的失效位移-失效峰值力曲线

    Figure  9.  Failure displacement-failure peak force curves of the batteries under different punch shapes

    图  10  不同冲击速度下冲头直径对电池失效位移和失效峰值力的影响

    Figure  10.  Influence of punch diameter on the battery failure displacement and failure peak force at different impact velocities

    表  1  NCR18650圆柱形锂离子电池参数

    Table  1.   Parameters of the NCR18650 cylindrical lithium-ion battery

    Rated capacity/
    (mA·h)
    Diameter/mm Length/mm Nominal voltage/V Charge termination
    voltage/V
    Discharge cut-off
    voltage/V
    3400 18 65 3.7 4.2 2.75
    下载: 导出CSV

    表  2  有限元模型材料参数

    Table  2.   Finite element model material parameters

    Component Material type Poisson’s ratio Density/(kg·m−3) Elasticity modulus/GPa
    Indenter MAT_20 0.30 7800 210
    Shell MAT_24 0.30 2700 69
    Inner core MAT_63 0.01 2000 0.38
    下载: 导出CSV
  • [1] 来鑫, 陈权威, 顾黄辉, 等. 面向“双碳”战略目标的锂离子电池生命周期评价: 框架、方法与进展 [J]. 机械工程学报, 2022, 58(22): 3–18. doi: 10.3901/JME.2022.22.003

    LAI X, CHEN Q W, GU H H, et al. Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality: framework, methods, and progress [J]. Journal of Mechanical Engineering, 2022, 58(22): 3–18. doi: 10.3901/JME.2022.22.003
    [2] 刘南南, 张新春, 董思捷, 等. 不同挤压载荷下方形锂离子电池的力学响应特性研究 [J/OL]. 应用力学学报, 2024, 1−7. http://kns.cnki.net/kcms/detail/61.1112.O3.20221207.1750.012.html.

    LIU N N, ZHANG X C, DONG S J, et al. Mechanical response of square lithium-ion battery under different compression loadings [J/OL]. Chinese Journal of Applied Mechanics, 2024, 1−7. http://kns.cnki.net/kcms/detail/61.1112.O3.20221207.1750.012.html.
    [3] ZHANG X C, ZHANG T, LIU N N, et al. Dynamic crushing behaviors and failure of cylindrical lithium-ion batteries subjected to impact loading [J]. Engineering Failure Analysis, 2023, 154: 107653. doi: 10.1016/j.engfailanal.2023.107653
    [4] 尹啸笛, 张涛, 张新春, 等. 机械滥用下锂离子电池的力学响应及安全性预测研究进展 [J]. 材料导报, 2024, 38(2): 22070154. doi: 10.11896/cldb.22070154

    YIN X D, ZHANG T, ZHANG X C, et al. Research progress on mechanical responses and safety prediction of lithium-ion batteries under mechanical abuse [J]. Materials Reports, 2024, 38(2): 22070154. doi: 10.11896/cldb.22070154
    [5] ATTAR P, GALOS J, BEST A S, et al. Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries [J]. Composite Structures, 2020, 237: 111937. doi: 10.1016/j.compstruct.2020.111937
    [6] 董思捷, 张新春, 汪玉林, 等. 不同挤压载荷下圆柱形锂离子电池的失效机理试验研究 [J]. 中国机械工程, 2022, 33(8): 915–920, 951. doi: 10.3969/j.issn.1004-132X.2022.08.005

    DONG S J, ZHANG X C, WANG Y L, et al. Experimental study of failure mechanism of cylindrical lithium-ion batteries under different compression loadings [J]. China Mechanical Engineering, 2022, 33(8): 915–920, 951. doi: 10.3969/j.issn.1004-132X.2022.08.005
    [7] GREVE L, FEHRENBACH C. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells [J]. Journal of Power Sources, 2012, 214: 377–385. doi: 10.1016/j.jpowsour.2012.04.055
    [8] JIA Y K, GAO X, MOUILLET J B, et al. Effective thermo-electro-mechanical modeling framework of lithium-ion batteries based on a representative volume element approach [J]. Journal of Energy Storage, 2021, 33: 102090. doi: 10.1016/j.est.2020.102090
    [9] LIU B H, ZHANG J J, ZHANG C, et al. Mechanical integrity of 18650 lithium-ion battery module: packing density and packing mode [J]. Engineering Failure Analysis, 2018, 91: 315–326. doi: 10.1016/j.engfailanal.2018.04.041
    [10] BEAUMONT R, MASTERS I, DAS A, et al. Methodology for developing a macro finite element model of lithium-ion pouch cells for predicting mechanical behaviour under multiple loading conditions [J]. Energies, 2021, 14(7): 1921. doi: 10.3390/en14071921
    [11] 李志杰, 陈吉清, 兰凤崇, 等. 机械外力下动力电池包的系统安全性分析与评价 [J]. 机械工程学报, 2019, 55(12): 137–148. doi: 10.3901/JME.2019.12.137

    LI Z J, CHEN J Q, LAN F C, et al. Analysis and evaluation on system safety of power battery pack under mechanical loading [J]. Journal of Mechanical Engineering, 2019, 55(12): 137–148. doi: 10.3901/JME.2019.12.137
    [12] WANG L B, YIN S, XU J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: from cell deformation to short-circuit onset [J]. Journal of Power Sources, 2019, 413: 284–292. doi: 10.1016/j.jpowsour.2018.12.059
    [13] ZHOU M Z, HU L L, CHEN S R, et al. Different mechanical-electrochemical coupled failure mechanism and safety evaluation of lithium-ion pouch cells under dynamic and quasi-static mechanical abuse [J]. Journal of Power Sources, 2021, 497: 229897. doi: 10.1016/j.jpowsour.2021.229897
    [14] HU L L, ZHANG Z W, ZHOU M Z, et al. Crushing behaviors and failure of packed batteries [J]. International Journal of Impact Engineering, 2020, 143: 103618. doi: 10.1016/j.ijimpeng.2020.103618
    [15] JIA Y K, YIN S, LIU B H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading [J]. Energy, 2019, 166: 951–960. doi: 10.1016/j.energy.2018.10.142
    [16] ZHANG H J, ZHOU M Z, HU L L, et al. Mechanism of the dynamic behaviors and failure analysis of lithium-ion batteries under crushing based on stress wave theory [J]. Engineering Failure Analysis, 2020, 108: 104290. doi: 10.1016/j.engfailanal.2019.104290
    [17] XING B B, XIAO F Y, KOROGI Y, et al. Direction-dependent mechanical-electrical-thermal responses of large-format prismatic Li-ion battery under mechanical abuse [J]. Journal of Energy Storage, 2021, 43: 103270. doi: 10.1016/j.est.2021.103270
    [18] PAN Z X, LI W, XIA Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading [J]. Journal of Energy Storage, 2020, 27: 101016. doi: 10.1016/j.est.2019.101016
    [19] XU J, LIU B H, WANG X Y, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies [J]. Applied Energy, 2016, 172: 180–189. doi: 10.1016/j.apenergy.2016.03.108
    [20] WIERZBICKI T, SAHRAEI E. Homogenized mechanical properties for the jellyroll of cylindrical lithium-ion cells [J]. Journal of Power Sources, 2013, 241: 467–476. doi: 10.1016/j.jpowsour.2013.04.135
    [21] 兰凤崇, 郑文杰, 李志杰, 等. 车用动力电池的挤压载荷变形响应及内部短路失效分析 [J]. 华南理工大学学报(自然科学版), 2018, 46(6): 65–72. doi: 10.3969/j.issn.1000-565X.2018.06.009

    LAN F C, ZHENG W J, LI Z J, et al. Compression load-deformation response and internal short circuit failure analysis of vehicle powered batteries [J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(6): 65–72. doi: 10.3969/j.issn.1000-565X.2018.06.009
    [22] XU J, LIU B H, WANG L B, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing [J]. Engineering Failure Analysis, 2015, 53: 97–110. doi: 10.1016/j.engfailanal.2015.03.025
    [23] SAHRAEI E, MEIER J, WIERZBICKI T. Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells [J]. Journal of Power Sources, 2014, 247: 503–516. doi: 10.1016/j.jpowsour.2013.08.056
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  13
  • PDF下载量:  14
出版历程
  • 收稿日期:  2024-01-10
  • 修回日期:  2024-01-31
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回