模拟高原环境下敏化方式对乳化炸药爆轰性能的影响研究

陈正严 吴红波 蔡心远 马成帅 谢守东

陈正严, 吴红波, 蔡心远, 马成帅, 谢守东. 模拟高原环境下敏化方式对乳化炸药爆轰性能的影响研究[J]. 高压物理学报, 2024, 38(4): 045202. doi: 10.11858/gywlxb.20230838
引用本文: 陈正严, 吴红波, 蔡心远, 马成帅, 谢守东. 模拟高原环境下敏化方式对乳化炸药爆轰性能的影响研究[J]. 高压物理学报, 2024, 38(4): 045202. doi: 10.11858/gywlxb.20230838
CHEN Zhengyan, WU Hongbo, CAI Xinyuan, MA Chengshuai, XIE Shoudong. Effect of Aensitization Methods on Detonation Performance of Emulsion Explosive in Simulated Plateau Environment[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045202. doi: 10.11858/gywlxb.20230838
Citation: CHEN Zhengyan, WU Hongbo, CAI Xinyuan, MA Chengshuai, XIE Shoudong. Effect of Aensitization Methods on Detonation Performance of Emulsion Explosive in Simulated Plateau Environment[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045202. doi: 10.11858/gywlxb.20230838

模拟高原环境下敏化方式对乳化炸药爆轰性能的影响研究

doi: 10.11858/gywlxb.20230838
基金项目: 安徽高校自然科学研究重点项目(KJ2019A0121)
详细信息
    作者简介:

    陈正严(1999- ),男,硕士,主要从事乳化炸药与爆炸效应研究. E-mail:1710628330@qq.com

    通讯作者:

    吴红波(1975- ),男,博士,教授,主要从事爆破器材与安全研究. E-mail:hbwu@aust.edu.cn

  • 中图分类号: O389; TJ55

Effect of Aensitization Methods on Detonation Performance of Emulsion Explosive in Simulated Plateau Environment

  • 摘要: 为研究高原环境对不同敏化方式乳化炸药的影响程度,选取3种典型的敏化材料制备乳化炸药样品,模拟并对比分析了高原环境(−20 ℃、约0.05 MPa)储存后乳化炸药的微观结构和爆轰性能变化。结果表明:低温低压下的高原环境主要从加剧破坏乳化体系稳定性与热点分布两方面影响炸药的性能,在该环境下化学敏化炸药相较于物理敏化炸药的析晶程度较低,但热点变化较大,导致爆轰性能下降;物理敏化中,膨胀珍珠岩炸药晶体的生长方式更加复杂,因此更易破乳析晶,储存稳定性与爆轰性能均有明显降低;相对而言,树脂微球炸药在低温低压下的析晶程度与爆轰性能均较稳定。综合上述结果,树脂微球乳化炸药具有更好的高原适应性。

     

  • 图  爆轰性能测试装置示意图

    Figure  1.  Schematic diagram of the detonation performance test device

    图  各组乳化炸药样品的显微图像

    Figure  2.  Microscopic images of emulsion explosive samples in each group

    图  各组乳化炸药溶失率随高原储存天数的变化

    Figure  3.  Plot of dissolution rate of emulsified explosives in each group as a function of storage days in plateau

    图  各组乳化炸药样品的爆速

    Figure  4.  Detonation velocity of emulsion explosive samples in each group

    图  各组乳化炸药的冲击波超压时程曲线

    Figure  5.  Shock wave overpressure-time history curves of emulsion explosives in each group

    表  1  乳化基质配方

    Table  1.   Emulsified matrix formulation

    IngredientsProportion/%
    AN74
    SN9
    H2O11
    Compound wax4
    Emulsifier2
    下载: 导出CSV

    表  2  各组乳化炸药的冲击波超压和冲量

    Table  2.   Shock wave overpressure and impluse of emulsion explosives in each group

    SamplePeak overpressure/kPaImpulse/(Pa·s)
    1 d15 d30 d1 d15 d30 d
    1552.075371.297267.52344.22540.54237.290
    2645.803533.071473.64468.21063.33356.095
    3332.724268.145186.25837.16132.26528.189
    下载: 导出CSV
  • [1] 汪旭光. 乳化炸药 [M]. 2版. 北京: 冶金工业出版社, 2008: 3–5.
    [2] 赵晓莉, 夏斌, 刘尊义, 等. 模拟高原环境对炸药爆速影响的试验研究 [J]. 爆破器材, 2015, 44(2): 36–39. doi: 10.3969/j.issn.1001-8352.2015.02.009

    ZHAO X L, XIA B, LIU Z Y, et al. Experimental research on detonation velocity of explosive in simulated plateau environment [J]. Explosive Materials, 2015, 44(2): 36–39. doi: 10.3969/j.issn.1001-8352.2015.02.009
    [3] 高嵩. 多年冻土爆破施工技术应用研究 [D]. 成都: 西南交通大学, 2006: 24.
    [4] 常弘毅, 汪泉, 李孝臣, 等. 高原地区爆破器材与技术研究综述 [J]. 煤矿爆破, 2022, 40(4): 1–6, 20. doi: 10.3969/j.issn.1674-3970.2022.04.001

    CHANG H Y, WANG Q, LI X C, et al. Research on explosive materials and technology in plateau area [J]. Coal Mine Blasting, 2022, 40(4): 1–6, 20. doi: 10.3969/j.issn.1674-3970.2022.04.001
    [5] 叶志文, 吕春绪, 刘大斌. 新型高能乳化炸药的制备及性能 [J]. 火炸药学报, 2011, 34(6): 41–44. doi: 10.3969/j.issn.1007-7812.2011.06.010

    YE Z W, LÜ C X, LIU D B. Preparation and properties of new high strength emulsion explosive [J]. Chinese Journal of Explosives & Propellants, 2011, 34(6): 41–44. doi: 10.3969/j.issn.1007-7812.2011.06.010
    [6] 吴红波, 杨柳, 沈占军, 等. 二甲基亚砜对乳胶基质耐低温性能及热分解特性的影响 [J]. 含能材料, 2022, 30(3): 242–249. doi: 10.11943/CJEM2021176

    WU H B, YANG L, SHEN Z J, et al. Effect of dimethyl sulfoxide on low temperature resistance and thermal decomposition of emulsion explosive matrix [J]. Chinese Journal of Energetic Materials, 2022, 30(3): 242–249. doi: 10.11943/CJEM2021176
    [7] 朱可可, 邓长城, 张小宇. 油相材料粘度对乳化炸药耐低温性能的影响 [J]. 火工品, 2021(3): 36–38. doi: 10.3969/j.issn.1003-1480.2021.03.010

    ZHU K K, DENG C C, ZHANG X Y. Influence of oil phase material viscosity on low temperature resistance of emulsion explosive [J]. Initiators & Pyrotechnics, 2021(3): 36–38. doi: 10.3969/j.issn.1003-1480.2021.03.010
    [8] SMITH J G B. An emulsion explosive and a method of making and stabilising such explosive: EP0067520B1 [P]. 1987-09-09.
    [9] 程扬帆, 刘蓉, 马宏昊, 等. 储氢材料在乳化炸药中的应用 [J]. 含能材料, 2013, 21(2): 268–272. doi: 10.3969/j.issn.1006-9941.2013.02.023

    CHENG Y F, LIU R, MA H H, et al. Hydrogen storage materials applied in emulsion explosives [J]. Chinese Journal of Energetic Materials, 2013, 21(2): 268–272. doi: 10.3969/j.issn.1006-9941.2013.02.023
    [10] 程扬帆, 马宏昊, 沈兆武. 氢化镁储氢型乳化炸药的爆炸特性研究 [J]. 高压物理学报, 2013, 27(1): 45–50. doi: 10.11858/gywlxb.2013.01.006

    CHENG Y F, MA H H, SHEN Z W. Detonation characteristics of emulsion explosives sensitized by MgH2 [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 45–50. doi: 10.11858/gywlxb.2013.01.006
    [11] 程扬帆, 马宏昊, 沈兆武. MgH2对乳化炸药的压力减敏影响实验 [J]. 爆炸与冲击, 2014, 34(4): 427–432. doi: 10.11883/1001-1455(2014)04-0427-06

    CHENG Y F, MA H H, SHEN Z W. Experimental research on pressure desensitization of emulsion explosive sensitized by MgH2 [J]. Explosion and Shock Waves, 2014, 34(4): 427–432. doi: 10.11883/1001-1455(2014)04-0427-06
    [12] FANG H, CHENG Y F, TAO C, et al. Effects of content and particle size of cenospheres on the detonation characteristics of emulsion explosive [J]. Journal of Energetic Materials, 2021, 39(2): 197–214. doi: 10.1080/07370652.2020.1770896
    [13] 孙宝亮, 黄文尧, 汪泉, 等. 硅藻土为载体的低爆速乳化炸药制备与性能 [J]. 含能材料, 2023, 31(1): 26–34. doi: 10.11943/CJEM2022092

    SUN B L, HUANG W Y, WANG Q, et al. Preparation and performance of diatomite emulsion explosive with low detonation velocity [J]. Chinese Journal of Energetic Materials, 2023, 31(1): 26–34. doi: 10.11943/CJEM2022092
    [14] 谢圣艳, 何俊蓉, 肖景龙, 等. 树脂微球敏化乳化炸药技术研究 [J]. 爆破器材, 2018, 47(1): 26–31. doi: 10.3969/j.issn.1001-8352.2018.01.005

    XIE S Y, HE J R, XIAO J L, et al. Study on sensitizing technology of emulsion explosive sensitized by resin microspheres [J]. Explosive Materials, 2018, 47(1): 26–31. doi: 10.3969/j.issn.1001-8352.2018.01.005
    [15] 谢圣艳, 何俊蓉, 李斌, 等. 树脂微球敏化乳化炸药的安全性研究 [J]. 爆破器材, 2018, 47(3): 46–50. doi: 10.3969/j.issn.1001-8352.2018.03.009

    XIE S Y, HE J R, LI B, et al. Safety of emulsion explosives sensitized by resin microspheres [J]. Explosive Materials, 2018, 47(3): 46–50. doi: 10.3969/j.issn.1001-8352.2018.03.009
    [16] LIU L, QI H Y, ZHANG H T, et al. Effect of perlite content on performance of emulsion explosive in under-water environment [J]. Journal of Physics: Conference Series, 2022, 2381(1): 012102. doi: 10.1088/1742-6596/2381/1/012102
    [17] 杨长青, 王有会. 浅谈影响乳胶基质物理敏化密度的因素 [J]. 爆破器材, 2011, 40(2): 20–22. doi: 10.3969/j.issn.1001-8352.2011.02.007

    YANG C Q, WANG Y H. Brief discussion on the factors affecting physical sensitization density of emulsion matrix [J]. Explosive Materials, 2011, 40(2): 20–22. doi: 10.3969/j.issn.1001-8352.2011.02.007
    [18] 王琦. 膨胀树脂微球敏化乳化炸药爆炸特性及安定性研究 [D]. 淮南: 安徽理工大学, 2020: 14–35.
    [19] ZHANG K M, CUI Z Z, CHEN X Y, et al. Peculiarity for the stability of three different emulsion explosives [J]. Journal of Dispersion Science and Technology, 2022, 43(11): 1725–1734. doi: 10.1080/01932691.2021.2021088
    [20] YUNOSHEV A S, BORDZILOVSKII S A, VORONIN M S, et al. Detonation pressure of an emulsion explosive sensitized by polymer microballoons [J]. Combustion, Explosion, and Shock Waves, 2019, 55(4): 426–433. doi: 10.1134/S0010508219040087
    [21] 张阳. 乳胶基质失稳过程的规律研究 [D]. 北京: 北京科技大学, 2019: 67–70.
    [22] ZHANG K M, NI O Q, HUANG J D, et al. A facile and efficient method to investigate the effect of the nature of surfactant and continuous phase on the performance of emulsion explosive [J]. Journal of Molecular Liquids, 2018, 249: 203–210. doi: 10.1016/j.molliq.2017.10.149
    [23] KRAMARCZYK B, PYTLIK M, MERTUSZKA P, et al. Novel sensitizing agent formulation for bulk emulsion explosives with improved energetic parameters [J]. Materials, 2022, 15(3): 900. doi: 10.3390/ma15030900
    [24] CHEN J P, MA H H, WANG Y X, et al. Effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives sensitized by glass microballoons [J]. Defence Technology, 2022, 18(5): 747–754. doi: 10.1016/j.dt.2021.03.021
    [25] 李子涵, 程扬帆, 王浩, 等. 负压环境对乳化炸药爆炸温度场和有害效应的影响 [J]. 爆炸与冲击, 2023, 43(8): 082301. doi: 10.11883/bzycj-2023-0106

    LI Z H, CHENG Y F, WANG H, et al. Influences of negative pressure conditions on the explosion temperature field and harmful effects of emulsion explosive [J]. Explosion and Shock Waves, 2023, 43(8): 082301. doi: 10.11883/bzycj-2023-0106
    [26] AFANASEV P I, MAKHMUDOV K F. Assessment of the parameters of a shock wave on the wall of an explosion cavity with the refraction of a detonation wave of emulsion explosives [J]. Applied Sciences, 2021, 11(9): 3976. doi: 10.3390/app11093976
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  24
  • PDF下载量:  14
出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-01-30
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回