“碳纤维-石墨烯”混合体系在3D打印聚氨酯复合材料力学及微波后处理工艺中的协同作用

王久强 李永存 刘朝阳 雷科明 郭章新 栾云博

王久强, 李永存, 刘朝阳, 雷科明, 郭章新, 栾云博. “碳纤维-石墨烯”混合体系在3D打印聚氨酯复合材料力学及微波后处理工艺中的协同作用[J]. 高压物理学报, 2024, 38(3): 034102. doi: 10.11858/gywlxb.20230814
引用本文: 王久强, 李永存, 刘朝阳, 雷科明, 郭章新, 栾云博. “碳纤维-石墨烯”混合体系在3D打印聚氨酯复合材料力学及微波后处理工艺中的协同作用[J]. 高压物理学报, 2024, 38(3): 034102. doi: 10.11858/gywlxb.20230814
WANG Jiuqiang, LI Yongcun, LIU Chaoyang, LEI Keming, GUO Zhangxin, LUAN Yunbo. Synergistic Effects of “Carbon Fibre-Graphene” Hybrid Systems and Microwave Post-Treatment Processes on the Mechanics of 3D Printed Polyurethane Composites[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 034102. doi: 10.11858/gywlxb.20230814
Citation: WANG Jiuqiang, LI Yongcun, LIU Chaoyang, LEI Keming, GUO Zhangxin, LUAN Yunbo. Synergistic Effects of “Carbon Fibre-Graphene” Hybrid Systems and Microwave Post-Treatment Processes on the Mechanics of 3D Printed Polyurethane Composites[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 034102. doi: 10.11858/gywlxb.20230814

“碳纤维-石墨烯”混合体系在3D打印聚氨酯复合材料力学及微波后处理工艺中的协同作用

doi: 10.11858/gywlxb.20230814
基金项目: 国家自然科学基金(12041201);山西省基础研究计划项目(202203021211126)
详细信息
    作者简介:

    王久强(1999-),男,硕士,主要从事复合材料研究. E-mail:wang469201688@163.com

    通讯作者:

    栾云博(1984-),女,博士,副教授,主要从事复合材料研究. E-mail:luanyunbo@tyut.edu.cn

  • 中图分类号: O347; TB333

Synergistic Effects of “Carbon Fibre-Graphene” Hybrid Systems and Microwave Post-Treatment Processes on the Mechanics of 3D Printed Polyurethane Composites

  • 摘要: 为研究“碳纤维-石墨烯”(carbon fiber-graphene,CF-G)增强热塑性聚氨酯(TPU)复合材料3D打印试件的力学性能以及微波后处理的影响,通过螺杆挤出工艺制备了CF-G增强TPU(G+CF/TPU)复合材料线材,然后采用熔融沉积成型技术和微波后处理工艺,制备了G+CF/TPU复合材料3D打印试件。研究表明,CF-G异质结构能够协同提高TPU复合材料的力学性能,特别是采用新型微波后处理工艺后,G+CF/TPU试件的拉伸强度和韧性得到进一步提高。其原因是CF-G异质结构与微波的协同作用促进了增强相与基体之间的界面黏结,减少了3D打印过程中点、层和道之间的内部缺陷。研究结果对于探索3D打印材料的力学性能强化和后处理工艺优化具有积极的意义。

     

  • 图  试件制备流程和性能测试

    Figure  1.  Specimen preparation process and performance testing

    图  无微波处理的纯TPU样品和无微波处理的不同TPU复合材料的拉伸测试结果

    Figure  2.  Tensile test results of pure TPU samples and different TPU composites in the absence of microwave radiation

    图  无微波处理的纯TPU样品与微波处理后的不同TPU复合材料的拉伸测试结果

    Figure  3.  Tensile test results of pure TPU samples without microwave radiation and different TPU composites after microwave radiation treatment

    图  微波处理前后不同复合材料的微观形貌:(a)~(e) 微波处理前,(f)~(j) 微波处理后

    Figure  4.  Microscopic morphology of different composites before and after microwave treatment: (a)−(e) before microwave treatment, (f)−(j) after microwave treatment

    图  不同TPU复合材料的负载传递机制示意图

    Figure  5.  Schematic illustration of load transfer mechanisms for different TPU composites

    图  G+CF/TPU复合材料的微波吸收示意图

    Figure  6.  Schematic diagram of microwave absorption of G+CF/TPU composites

    图  微波处理30 s后CF/TPU和G+CF/TPU复合材料的表面温度

    Figure  7.  Surface temperature of CF/TPU and G+CF/TPU composites after microwave treatment of 30 s

    表  1  不同复合材料的挤压参数

    Table  1.   Extrusion parameters of different composites

    Material Extruder barrel heating zone temperature/℃ Extruder head temperature/℃ Screw rotational speed/(r·min−1)
    Pure TPU 196 190 24
    CF/TPU 188 184 18
    G/TPU 182 179 24
    G+CF/TPU 180 177 18
    下载: 导出CSV
  • [1] 侯祥龙, 雷建银, 李世强, 等. 3D打印贝壳仿生复合材料的拉伸力学行为 [J]. 高压物理学报, 2020, 34(1): 014102. doi: 10.11858/gywlxb.20190768

    HOU X L, LEI J Y, LI S Q, et al. Tension mechanical behavior of 3D printed composite materials inspired by nacre [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014102. doi: 10.11858/gywlxb.20190768
    [2] 孟祥生, 武晓东, 张海广. 3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟 [J]. 高压物理学报, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827

    MENG X S, WU X D, ZHANG H G. Numerical simulation on interlaminar fracture toughness of 3D printed mortar laminated composites [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
    [3] 于鹏, 韦归鸿, 黄圣华, 等. 3D打印TPU/PCL共混物食管支架在食管内的生物力学性能 [J]. 工程塑料应用, 2023, 51(9): 123–129. doi: 10.3969/j.issn.1001-3539.2023.09.020

    YU P, WEI G H, HUANG S H, et al. Biomechanical properties of 3D printed TPU/PCL blends for esophageal stents in the esopha-gus [J]. Engineering Plastics Application, 2023, 51(9): 123–129. doi: 10.3969/j.issn.1001-3539.2023.09.020
    [4] YAN J, DEMIRCI E, GANESAN A, et al. Extrusion width critically affects fibre orientation in short fibre reinforced material extrusion additive manufacturing [J]. Additive Manufacturing, 2022, 49: 102496. doi: 10.1016/j.addma.2021.102496
    [5] TEKINALP H L, KUNC V, VELEZ-GARCIA G M, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing [J]. Composites Science and Technology, 2014, 105: 144–150. doi: 10.1016/j.compscitech.2014.10.009
    [6] NUGROHO W T, DONG Y, PRAMANIK A, et al. Smart polyurethane composites for 3D or 4D printing: general-purpose use, sustainability and shape memory effect [J]. Composites Part B: Engineering, 2021, 223: 109104. doi: 10.1016/j.compositesb.2021.109104
    [7] WANG X, JIANG M, ZHOU Z W, et al. 3D printing of polymer matrix composites: a review and prospective [J]. Composites Part B: Engineering, 2017, 110: 442–458. doi: 10.1016/j.compositesb.2016.11.034
    [8] LIU W B, WU N, POCHIRAJU K. Shape recovery characteristics of SiC/C/PLA composite filaments and 3D printed parts [J]. Composites Part A: Applied Science and Manufacturing, 2018, 108: 1–11. doi: 10.1016/j.compositesa.2018.02.017
    [9] DUTY C E, KUNC V, COMPTON B, et al. Structure and mechanical behavior of big area additive manufacturing (BAAM) materials [J]. Rapid Prototyping Journal, 2017, 23(1): 181–189. doi: 10.1108/RPJ-12-2015-0183
    [10] HUA L Q, WANG X, DING L N, et al. Effects of fabrication parameters on the mechanical properties of short basalt-fiber-reinforced thermoplastic composites for fused deposition modeling-based 3D printing [J]. Polymer Composites, 2023, 44(6): 3341–3357. doi: 10.1002/pc.27325
    [11] HMEIDAT N S, PACK R C, TALLEY S J, et al. Mechanical anisotropy in polymer composites produced by material extrusion additive manufacturing [J]. Additive Manufacturing, 2020, 34: 101385.
    [12] TZOUNIS L, PETOUSIS M, GRAMMATIKOS S, et al. 3D printed thermoelectric polyurethane/multiwalled carbon nanotube nanocomposites: a novel approach towards the fabrication of flexible and stretchable organic thermoelectrics [J]. Materials, 2020, 13(12): 2879. doi: 10.3390/ma13122879
    [13] NING F, CONG W, QIU J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling [J]. Composites Part B: Engineering, 2015, 80: 369–378. doi: 10.1016/j.compositesb.2015.06.013
    [14] CAO L, XIAO J, KIM J K, et al. Effect of post-process treatments on mechanical properties and surface characteristics of 3D printed short glass fiber reinforced PLA/TPU using the FDM process [J]. CIRP Journal of Manufacturing Science and Technology, 2023, 41: 135–143. doi: 10.1016/j.cirpj.2022.12.008
    [15] MUSHTAQ R T, WANG Y, KHAN A M, et al. A post-processing laser polishing method to improve process performance of 3D printed new industrial nylon-6 polymer [J]. Journal of Manufacturing Processes, 2023, 101: 546–560. doi: 10.1016/j.jmapro.2023.06.019
    [16] BARMOUZ M, HOSSEIN BEHRAVESH A. Shape memory behaviors in cylindrical shell PLA/TPU-cellulose nanofiber bio-nanocomposites: analytical and experimental assessment [J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 160–172. doi: 10.1016/j.compositesa.2017.06.014
    [17] HAN S, CHAND A, ARABY S,et al. Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite [J]. Nanotechnology, 2020, 31(7): 075702. doi: 10.1088/1361-6528/ab5042
    [18] SANG L, HAN S F, LI Z P, et al. Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications [J]. Composites Part B: Engineering, 2019, 164: 629–639. doi: 10.1016/j.compositesb.2019.01.085
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  23
  • PDF下载量:  19
出版历程
  • 收稿日期:  2023-12-14
  • 修回日期:  2024-01-18
  • 网络出版日期:  2024-05-22
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回