压力诱导下CsGeBr3的结构相变

曲佳 王弈铭 王欣 杨文革

曲佳, 王弈铭, 王欣, 杨文革. 压力诱导下CsGeBr3的结构相变[J]. 高压物理学报. doi: 10.11858/gywlxb.20230769
引用本文: 曲佳, 王弈铭, 王欣, 杨文革. 压力诱导下CsGeBr3的结构相变[J]. 高压物理学报. doi: 10.11858/gywlxb.20230769
QU Jia, WANG Yiming, WANG Xin, YANG Wenge. Pressure-Induced Structural Phase Transition in Halide Perovskite CsGeBr3[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20230769
Citation: QU Jia, WANG Yiming, WANG Xin, YANG Wenge. Pressure-Induced Structural Phase Transition in Halide Perovskite CsGeBr3[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20230769

压力诱导下CsGeBr3的结构相变

doi: 10.11858/gywlxb.20230769
详细信息
    作者简介:

    曲 佳(1995-),女,博士研究生,主要从事卤化物钙钛矿的高压物性研究.E-mail:qujia19@mails.jlu.edu.cn

    通讯作者:

    王 欣(1973-),男,博士,教授,主要从事极端条件下材料的物性研究. E-mail:xin_wang@jlu.edu.cn

    杨文革(1968-),男,博士,教授,主要从事高压材料的结构和物性研究. E-mail:yangwg@hpstar.ac.cn

  • 中图分类号: O521.2

Pressure-Induced Structural Phase Transition in Halide Perovskite CsGeBr3

  • 摘要: 近年来,压力下卤化物钙钛矿成为新的研究热点,呈现出许多优异的电学和光学等特性。高压下钙钛矿结构演变研究是所有物性研究的基石和重点。利用金刚石对顶砧压机,结合原位高压同步辐射X射线衍射、原位高压拉曼光谱、紫外-可见-近红外分光光度计测量技术和第一性原理计算,对全无机卤化物钙钛矿CsGeBr3在高压下的结构演变进行了系统研究。结果表明:CsGeBr3在常压下是菱方$ R3m $结构;在1 GPa时,CsGeBr3发生菱方$ R3m $到立方$ Pm\overline{3}m $的结构相变;在更高的压力下保持立方结构;菱方$ R3m $到立方$ Pm\overline{3}m $的相变是可逆的。研究结果为进一步探索卤化物钙钛矿在压力下的性质、拓展其应用前景提供了重要的科学依据。

     

  • 图  (a) CsGeBr3的SEM和EDS图像,(b) 常压下CsGeBr3的XRD谱与PDF标准卡的对比结果

    Figure  1.  (a) SEM and EDS images of CsGeBr3;(b) XRD pattern of CsGeBr3 under ambient pressure compared with PDF card

    图  (a) CsGeBr3的原位XRD谱随压力的变化,(b) 不同压力下CsGeBr3的XRD环,(c) 不同压力下CsGeBr3的XRD谱的Rietveld精修结果

    Figure  2.  (a) In situ XRD patterns of CsGeBr3 as a function of pressure; (b) XRD rings of CsGeBr3 at different pressures; (c) results of Rietveld refinement of XRD patterns of CsGeBr3 at different pressures

    图  (a) CsGeBr3的晶胞体积随压力的变化(低压相和高压相的p-V曲线均用Birch-Murnaghan状态方程拟),(b) CsGeBr3αβdGe-Br/(a/2)随压力的变化,(c) CsGeBr3在常压和高压下的晶体结构

    Figure  3.  (a) Formula unit cell volume of CsGeBr3 as a function of pressure (The p-V curves for low-pressure phase and high-pressure phase are both fitted with the Birch-Murnaghan equation of state); (b) α, β and dGe-Br/(a/2) of CsGeBr3 at various pressures; (c) crystal structure of CsGeBr3 under ambient pressure and high-pressure

    图  (a) 不同压力下CsGeBr3的原位拉曼光谱,(b) 30~250 cm−1范围内拉曼峰位随压力的变化,(c) 单晶CsGeBr3的原位紫外-可见-近红外吸收谱,(d) CsGeBr3在不同压力下的光学带隙(插图为常压下的Tauc图),(e) 加压过程中CsGeBr3的光学影像

    Figure  4.  (a) In situ Raman spectra of CsGeBr3 at diffrent pressures; (b) pressure dependence of the Raman peak positions in the wavenumber range of 30–250 cm−1; (c) in situ ultraviolet-visible-near infrared (UV-Vis-NIR) absorption spectra of single crystal CsGeBr3 under compression; (d) pressure dependence of the bandgaps of CsGeBr3 (the illustration shows the Tauc plot for ambient pressure); (e) optical photos of CsGeBr3 during compression

    图  (a) 3阶Birch-Murnaghan状态方程拟合的E-V曲线,(b) $ R3m $$ Pm\overline{3}m $相的焓差ΔH与压力的变化关系

    Figure  5.  (a) E-V curve fitted by third-order Birch-Murnaghan EOS;(b) relative enthalpies ΔH of $ R3m $ and $ Pm\overline{3}m $ phases vs. pressure

    表  1  不同压力下 CsGeBr3的XRD谱的Rietveld精修结果

    Table  1.   Rietveld refinement results of XRD patterns for CsGeBr3 at different pressures

    Pressure/GPa Crystal system Space group a α/(°) β/(°)
    0.80 Rhombohedral R3m 5.54443(12) 89.1376(33) 94.0181(30)
    1.43 Cubic ${ Pm\overline{3}m }$ 5.46294(19) 90 90
    3.01 Cubic $ {Pm\overline{3}m }$ 5.35809(14) 90 90
    Pressure/GPa dGe-Br d'Ge-Br V3 Z Rp/% Rwp/%
    0.80 2.58519(6) 2.96827(6) 170.382(11) 1 1.16 1.89
    1.43 2.73147(10) 163.034(17) 1 1.53 2.45
    3.01 2.67905(7) 153.826(12) 1 1.12 1.82
    下载: 导出CSV
  • [1] SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design [J]. Chemical Reviews, 2016, 116(7): 4558–4596. doi: 10.1021/acs.chemrev.5b00715
    [2] MITZI D B, CHONDROUDIS K, KAGAN C R. Organic-inorganic electronics [J]. IBM Journal of Research and Development, 2001, 45(1): 29–45. doi: 10.1147/rd.451.0029
    [3] LI W, WANG Z M, DESCHLER F, et al. Chemically diverse and multifunctional hybrid organic-inorganic perovskites [J]. Nature Reviews Materials, 2017, 2(3): 16099. doi: 10.1038/natrevmats.2016.99
    [4] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing optoelectronic properties of metal halide perovskites [J]. Chemical Reviews, 2016, 116(21): 12956–13008. doi: 10.1021/acs.chemrev.6b00136
    [5] GOLDSCHMIDT V M. Die gesetze der krystallochemie [J]. Naturwissenschaften, 1926, 14(21): 477–485. doi: 10.1007/BF01507527
    [6] SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties [J]. Chemical Reviews, 2019, 119(5): 3296–3348. doi: 10.1021/acs.chemrev.8b00644
    [7] FU Y P, ZHU H M, CHEN J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties [J]. Nature Reviews Materials, 2019, 4(3): 169–188. doi: 10.1038/s41578-019-0080-9
    [8] CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells [J]. Science, 2017, 358(6364): 739–744. doi: 10.1126/science.aam6323
    [9] PETRUS M L, SCHLIPF J, LI C, et al. Capturing the sun: a review of the challenges and perspectives of perovskite solar cells [J]. Advanced Energy Materials, 2017, 7(16): 1700264. doi: 10.1002/aenm.201700264
    [10] LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature, 2018, 562(7726): 245–248. doi: 10.1038/s41586-018-0575-3
    [11] WANG N N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells [J]. Nature Photonics, 2016, 10(11): 699–704. doi: 10.1038/nphoton.2016.185
    [12] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization [J]. Nature Communications, 2015, 6: 7586. doi: 10.1038/ncomms8586
    [13] XING J, YAN F, ZHAO Y W, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles [J]. ACS Nano, 2016, 10(7): 6623–6630. doi: 10.1021/acsnano.6b01540
    [14] AHMADI M, WU T, HU B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics [J]. Advanced Materials, 2017, 29(41): 1605242. doi: 10.1002/adma.201605242
    [15] DOU L T, YANG Y M, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J]. Nature Communications, 2014, 5: 5404. doi: 10.1038/ncomms6404
    [16] ZHOU Y X, HUANG Y Y, XU X L, et al. Nonlinear optical properties of halide perovskites and their applications [J]. Applied Physics Reviews, 2020, 7(4): 041313. doi: 10.1063/5.0025400
    [17] PARK N G. Perovskite solar cells: an emerging photovoltaic technology [J]. Materials Today, 2015, 18(2): 65–72. doi: 10.1016/j.mattod.2014.07.007
    [18] SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) [J]. Advanced Materials, 2015, 27(44): 7162–7167. doi: 10.1002/adma.201502567
    [19] WANG Y M, LI M T, PEI C Y, et al. Critical current density and vortex phase diagram in the superconductor Sn0.55In0.45Te [J]. Physical Review B, 2022, 106(5): 054506. doi: 10.1103/PhysRevB.106.054506
    [20] LIU X Q, LI M T, ZHANG Q, et al. Pressure engineering promising transparent oxides with large conductivity enhancement and strong thermal stability [J]. Advanced Science, 2022, 9(31): 2202973. doi: 10.1002/advs.202202973
    [21] LI M T, ZHANG D J, HAN J, et al. Pressure-tuning structural and electronic transitions in semimetal CoSb [J]. Physical Review B, 2021, 104(5): 054511. doi: 10.1103/PhysRevB.104.054511
    [22] LI N N, FAN F R, SUN F, et al. Pressure-enhanced interplay between lattice, spin, and charge in the mixed perovskite La2FeMnO6 [J]. Physical Review B, 2019, 99(19): 195115. doi: 10.1103/PhysRevB.99.195115
    [23] LIU X Q, JIANG P, WANG Y M, et al. Tc up to 23.6 K and robust superconductivity in the transition metal δ-Ti phase at megabar pressure [J]. Physical Review B, 2022, 105(22): 224511. doi: 10.1103/PhysRevB.105.224511
    [24] YAN L M, DING C, LI M T, et al. Modulating charge-density wave order and superconductivity from two alternative stacked monolayers in a bulk 4Hb-TaSe2 heterostructure via pressure [J]. Nano Letters, 2023, 23(6): 2121–2128. doi: 10.1021/acs.nanolett.2c04385
    [25] QU J, YAN L M, LIU H, et al. Pressure-induced structural phase transition in corundum-related class Cu3TeO6 [J]. High Pressure Research, 2021, 41(3): 318–327. doi: 10.1080/08957959.2021.1975699
    [26] LI N N, ZHANG Q, WANG Y G, et al. Perspective on the pressure-driven evolution of the lattice and electronic structure in perovskite and double perovskite [J]. Applied Physics Letters, 2020, 117(8): 080502. doi: 10.1063/5.0014947
    [27] LÜ X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization [J]. Advanced Materials, 2016, 28(39): 8663–8668. doi: 10.1002/adma.201600771
    [28] LIN J, CHEN H, GAO Y, et al. Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(47): 23404–23409.
    [29] ASFIA M B, JAMAN S, RASHID M A. Pressure induced band gap shifting from ultra-violet to visible region of RbSrCl3 perovskite [J]. Materials Research Express, 2022, 9(9): 095902. doi: 10.1088/2053-1591/ac8f88
    [30] LÜ X J, STOUMPOS C, HU Q Y, et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites [J]. National Science Review, 2021, 8(9): 288. doi: 10.1093/nsr/nwaa288
    [31] JAFFE A, LIN Y, MAO W L, et al. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3 [J]. Journal of the American Chemical Society, 2017, 139(12): 4330–4333. doi: 10.1021/jacs.7b01162
    [32] TANG L C, HUANG J Y, CHANG C S, et al. New infrared nonlinear optical crystal CsGeBr3: synthesis, structure and powder second-harmonic generation properties [J]. Journal of Physics: Condensed Matter, 2005, 17(46): 7275–7286. doi: 10.1088/0953-8984/17/46/011
    [33] HUANG L Y, LAMBRECHT W R L. Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si [J]. Physical Review B, 2016, 93(19): 195211. doi: 10.1103/PhysRevB.93.195211
    [34] ZHANG Q Q, MUSHAHALI H, DUAN H M, et al. The linear and nonlinear optical response of CsGeX3 (X = Cl, Br, and I): the finite field and first-principles investigation [J]. Optik, 2019, 179: 89–98. doi: 10.1016/j.ijleo.2018.10.159
    [35] LIN Z G, TANG L C, CHOU C P. Study on mid-IR NLO crystals CsGe(Br xCl1- x)3 [J]. Optical Materials, 2008, 31(1): 28–34. doi: 10.1016/j.optmat.2008.01.004
    [36] LIN Z G, TANG L C, CHOU C P. Characterization and properties of novel infrared nonlinear optical crystal CsGe(Br xCl1- x)3 [J]. Inorganic Chemistry, 2008, 47(7): 2362–2367. doi: 10.1021/ic7011777
    [37] HUANG L Y, LAMBRECHT W R L. Vibrational spectra and nonlinear optical coefficients of rhombohedral CsGeX3 halide compounds with X = I, Br, Cl [J]. Physical Review B, 2016, 94(11): 115202. doi: 10.1103/PhysRevB.94.115202
    [38] SEO D K, GUPTA N, WHANGBO M H, et al. Pressure-induced changes in the structure and band gap of CsGeX3 (X = Cl, Br) studied by electronic band structure calculations [J]. Inorganic Chemistry, 1998, 37(3): 407–410. doi: 10.1021/ic970659e
    [39] SCHWARZ U, WAGNER F, SYASSEN K, et al. Effect of pressure on the optical-absorption edges of CsGeBr3 and CsGeCl3 [J]. Physical Review B, 1996, 53(19): 12545–12548. doi: 10.1103/PhysRevB.53.12545
    [40] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [41] PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
    [42] LARSON A C, VON DREELE R B. General structure analysis system (GSAS): No. LAUR 86–748 [R]. Los Alamos: Los Alamos National Laboratory. 2004.
    [43] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
    [44] BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [45] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  5
  • PDF下载量:  9
出版历程
  • 收稿日期:  2023-10-25
  • 修回日期:  2023-12-15
  • 录用日期:  2023-12-25
  • 网络出版日期:  2024-07-19

目录

    /

    返回文章
    返回