非静水压强下固体分子氢的结构与电子性质演化

宋贤齐 刘畅 刘子恺 王建云 李全

宋贤齐, 刘畅, 刘子恺, 王建云, 李全. 非静水压强下固体分子氢的结构与电子性质演化[J]. 高压物理学报, 2023, 37(5): 050102. doi: 10.11858/gywlxb.20230720
引用本文: 宋贤齐, 刘畅, 刘子恺, 王建云, 李全. 非静水压强下固体分子氢的结构与电子性质演化[J]. 高压物理学报, 2023, 37(5): 050102. doi: 10.11858/gywlxb.20230720
SONG Xianqi, LIU Chang, LIU Zikai, WANG Jianyun, LI Quan. Structural and Electronic Properties of Solid Hydrogen at Non-Hydrostatic Pressures[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050102. doi: 10.11858/gywlxb.20230720
Citation: SONG Xianqi, LIU Chang, LIU Zikai, WANG Jianyun, LI Quan. Structural and Electronic Properties of Solid Hydrogen at Non-Hydrostatic Pressures[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050102. doi: 10.11858/gywlxb.20230720

非静水压强下固体分子氢的结构与电子性质演化

doi: 10.11858/gywlxb.20230720
基金项目: 国家自然科学基金(T2325013,52288102,52090024,12074140,12202158);国家重点研发计划(2021YFA1400503,2018YFA0703404);中国博士后科学基金(2023M731296)
详细信息
    作者简介:

    宋贤齐(1994-),男,博士,主要从事极端高压下计算凝聚态物理研究.E-mail:sxq@calypso.cn

    通讯作者:

    王建云(1992-),女,硕士,工程师,主要从事极端高压下计算凝聚态物理研究.E-mail:wjy@calypso.cn

    李 全(1980-),男,博士,教授,主要从事极端高压下计算凝聚态物理研究.E-mail:liquan777@jlu.edu.cn

  • 中图分类号: O521.2

Structural and Electronic Properties of Solid Hydrogen at Non-Hydrostatic Pressures

  • 摘要: 固体氢金属化所需的压强超过400 GPa,这种超高压条件给固体氢的实验制备和表征带来了极大的挑战。为此,利用第一性原理计算方法,系统研究了固体分子氢在非静水压强下的结构和物性演化。研究发现,在非静水高压条件下,固体分子氢具有良好的结构稳定性。非静水压条件将导致固体氢晶格的对称性破缺和电荷的重新分布,使固体分子氢在较低压强下(如压强低于300 GPa)转变为金属和超导体。据此提出了引入各向异性非静水压环境从而在较低压强下获得金属氢和高温超导氢的新思路。

     

  • 图  常压和高压条件下固体单质的金属化

    Figure  1.  Metallization of solid elementary substance at atmospheric and high pressures

    图  分子氢和原子氢的结构和电子轨道分布示意图

    Figure  2.  Structures and electron orbital distribution of molecular and atomic hydrogen

    图  固体氢候选相的焓-压强关系与代表性晶体结构

    Figure  3.  Enthalpy-pressure relations and typical crystal structures of solid hydrogen candidate phases

    图  高压下固体分子氢C2/c相沿(001)[010]晶向的剪切应力-应变曲线

    Figure  4.  Shear stress-strain curves of solid molecular hydrogen C2/c phase along the (001)[010] direction under high pressure

    图  250 GPa下分子氢C2/c相发生应变前后的电荷转移与超导体转变示意图

    Figure  5.  Electron transfer and superconducting transition of undeformed and deformed molecular hydrogen at 250 GPa

    图  350 GPa静水压下固体分子氢Cmca-12相的剪切应力-应变曲线

    Figure  6.  Shear stress-strain curves of solid molecular hydrogen Cmca-12 phase along various directions at 350 GPa

  • [1] WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
    [2] ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21(26): 1748–1749. doi: 10.1103/PhysRevLett.21.1748
    [3] BALL P. Metallic hydrogen in the spotlight [J]. Nature Materials, 2017, 16(3): 288. doi: 10.1038/nmat4872
    [4] DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
    [5] EREMETS M I, DROZDOV A P, KONG P P, et al. Semimetallic molecular hydrogen at pressure above 350 GPa [J]. Nature Physics, 2019, 15(12): 1246–1249. doi: 10.1038/s41567-019-0646-x
    [6] LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
    [7] MONACELLI L, ERREA I, CALANDRA M, et al. Black metal hydrogen above 360 GPa driven by proton quantum fluctuations [J]. Nature Physics, 2021, 17(1): 63–67. doi: 10.1038/s41567-020-1009-3
    [8] SONG X Q, LIU C, LI Q, et al. Stress-induced high- Tc superconductivity in solid molecular hydrogen [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(26): e2122691119. doi: 10.1073/PNAS.2122691119
    [9] ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
    [10] 李全, 马琰铭. 典型双原子分子晶体的高压解离和单原子相[J]. 高压物理学报, 2013, 27(3): 313–324. doi: 10.11858/gywlxb.2013.03.001

    LI Q, MA Y M. High pressure dissociation of typical diatomic molecular solids and their atomic phases [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 313–324. doi: 10.11858/gywlxb.2013.03.001
    [11] DALLADAY-SIMPSON P, BINNS J, PEÑA-ALVAREZ M, et al. Band gap closure, incommensurability and molecular dissociation of dense chlorine [J]. Nature Communications, 2019, 10(1): 1134. doi: 10.1038/s41467-019-09108-x
    [12] EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [13] WANG X L, WANG Y C, MIAO M S, et al. Cagelike diamondoid nitrogen at high pressures [J]. Physical Review Letters, 2012, 109(17): 175502. doi: 10.1103/PhysRevLett.109.175502
    [14] JI C, ADELEKE A A, YANG L X, et al. Nitrogen in black phosphorus structure [J]. Science Advances, 2020, 6(23): eaba9206. doi: 10.1126/sciadv.aba9206
    [15] DUAN D F, LIU Z T, LIN Z Y, et al. Multistep dissociation of fluorine molecules under extreme compression [J]. Physical Review Letters, 2021, 126(22): 225704. doi: 10.1103/PhysRevLett.126.225704
    [16] BARDEEN J, COOPER L N, SCHRIEFFER J R. Microscopic theory of superconductivity [J]. Physical Review, 1957, 106(1): 162–164. doi: 10.1103/PhysRev.106.162
    [17] BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity [J]. Physical Review, 1957, 108(5): 1175–1204. doi: 10.1103/PhysRev.108.1175
    [18] PICKARD C J, NEEDS R J. Structure of phase Ⅲ of solid hydrogen [J]. Nature Physics, 2007, 3(7): 473–476. doi: 10.1038/nphys625
    [19] PICKARD C J, MARTINEZ-CANALES M, NEEDS R J. Density functional theory study of phase Ⅳ of solid hydrogen [J]. Physical Review B, 2012, 85(21): 214114. doi: 10.1103/PhysRevB.85.214114
    [20] MCMINIS J, CLAY III R C, LEE D, et al. Molecular to atomic phase transition in hydrogen under high pressure [J]. Physical Review Letters, 2015, 114(10): 105305. doi: 10.1103/PhysRevLett.114.105305
    [21] DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164
    [22] MONSERRAT B, DRUMMOND N D, DALLADAY-SIMPSON P, et al. Structure and metallicity of phase Ⅴ of hydrogen [J]. Physical Review Letters, 2018, 120(25): 255701. doi: 10.1103/PhysRevLett.120.255701
    [23] MAO H K, HEMLEY R J. Ultrahigh-pressure transitions in solid hydrogen [J]. Reviews of Modern Physics, 1994, 66(2): 671–692. doi: 10.1103/RevModPhys.66.671
    [24] LORENZANA H E, SILVERA I F, GOETTEL K A. Orientational phase transitions in hydrogen at megabar pressures [J]. Physical Review Letters, 1990, 64(16): 1939–1942. doi: 10.1103/PhysRevLett.64.1939
    [25] HEMLEY R J, MAO H K. Phase transition in solid molecular hydrogen at ultrahigh pressures [J]. Physical Review Letters, 1988, 61(7): 857–860. doi: 10.1103/PhysRevLett.61.857
    [26] HOWIE R T, GUILLAUME C L, SCHELER T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Physical Review Letters, 2012, 108(12): 125501. doi: 10.1103/PhysRevLett.108.125501
    [27] JI C, LI B, LIU W J, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558–562. doi: 10.1038/s41586-019-1565-9
    [28] MEIER T, LANIEL D, PENA-ALVAREZ M, et al. Nuclear spin coupling crossover in dense molecular hydrogen [J]. Nature Communications, 2020, 11(1): 6334. doi: 10.1038/s41467-020-19927-y
    [29] ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
    [30] LI Y W, HAO J, LIU H Y, et al. The metallization and superconductivity of dense hydrogen sulfide [J]. The Journal of Chemical Physics, 2014, 140(17): 174712. doi: 10.1063/1.4874158
    [31] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [32] DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high- Tc superconductivity [J]. Scientific Reports, 2014, 4: 6968. doi: 10.1038/srep06968
    [33] PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [34] LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995. doi: 10.1073/pnas.1704505114
    [35] SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
    [36] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [37] WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109
    [38] MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
    [39] SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters, 2019, 123(9): 097001. doi: 10.1103/PhysRevLett.123.097001
    [40] LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 Mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. doi: 10.1073/pnas.1721425115
    [41] 卢志鹏, 祝文军, 刘绍军, 等. 非静水压条件下铁从 α ε结构相变的第一性原理计算[J]. 物理学报, 2009, 58(3): 2083–2089. doi: 10.7498/aps.58.2083

    LU Z P, ZHU W J, LIU S J, et al. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study [J]. Acta Physica Sinica, 2009, 58(3): 2083–2089. doi: 10.7498/aps.58.2083
    [42] CHENG C. Uniaxial phase transition in Si: ab initio calculations [J]. Physical Review B, 2003, 67(13): 134109. doi: 10.1103/PhysRevB.67.134109
    [43] GAÁL-NAGY K, STRAUCH D. Transition pressures and enthalpy barriers for the cubic diamond→ β-tin transition in Si and Ge under nonhydrostatic conditions [J]. Physical Review B, 2006, 73(13): 134101. doi: 10.1103/PhysRevB.73.134101
    [44] DANG C Q, LU A L, WANG H Y, et al. Diamond semiconductor and elastic strain engineering [J]. Journal of Semiconductors, 2022, 43(2): 021801. doi: 10.1088/1674-4926/43/2/021801
    [45] DANG C Q, CHOU J P, DAI B, et al. Achieving large uniform tensile elasticity in microfabricated diamond [J]. Science, 2021, 371(6524): 76–78. doi: 10.1126/science.abc4174
    [46] LIU C, SONG X Q, LI Q, et al. Smooth flow in diamond: atomistic ductility and electronic conductivity [J]. Physical Review Letters, 2019, 123(19): 195504. doi: 10.1103/PhysRevLett.123.195504
    [47] LIU C, SONG X Q, LI Q, et al. Superconductivity in compression-shear deformed diamond [J]. Physical Review Letters, 2020, 124(14): 147001. doi: 10.1103/PhysRevLett.124.147001
    [48] LIU C, SONG X Q, LI Q, et al. Superconductivity in shear strained semiconductors [J]. Chinese Physics Letters, 2021, 38(8): 086301. doi: 10.1088/0256-307X/38/8/086301
    [49] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169. doi: 10.1103/PhysRevB.54.11169
    [50] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [51] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [52] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
    [53] ZHANG Y, SUN H, CHEN C F. Superhard cubic BC2N compared to diamond [J]. Physical Review Letters, 2004, 93(19): 195504. doi: 10.1103/PhysRevLett.93.195504
    [54] PAN Z C, SUN H, CHEN C F. Colossal shear-strength enhancement of low-density cubic BC2N by nanoindentation [J]. Physical Review Letters, 2007, 98(13): 135505. doi: 10.1103/PhysRevLett.98.135505
    [55] PAN Z C, SUN H, CHEN C F. Indenter-angle-sensitive fracture modes and stress response at incipient plasticity [J]. Physical Review B, 2009, 79(10): 104102. doi: 10.1103/PhysRevB.79.104102
    [56] PAN Z C, SUN H, ZHANG Y, et al. Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite [J]. Physical Review Letters, 2009, 102(5): 055503. doi: 10.1103/PhysRevLett.102.055503
    [57] BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory [J]. Reviews of Modern Physics, 2001, 73(2): 515–562. doi: 10.1103/RevModPhys.73.515
    [58] GIANNOZZI P, BARONI S, BONINI N, et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502
    [59] TSE J S, KLUG D D, YAO Y S, et al. Structure and spectroscopic properties of dense solid hydrogen at 160 GPa [J]. Solid State Communications, 2008, 145(1/2): 5–10. doi: 10.1016/j.ssc.2007.10.018
    [60] MONSERRAT B, NEEDS R J, GREGORYANZ E, et al. Hexagonal structure of phase Ⅲ of solid hydrogen [J]. Physical Review B, 2016, 94(13): 134101. doi: 10.1103/PhysRevB.94.134101
    [61] SINGH R, AZADI S, KÜHNE T D. Anharmonicity and finite-temperature effects on the structure, stability, and vibrational spectrum of phase III of solid molecular hydrogen [J]. Physical Review B, 2014, 90(1): 014110. doi: 10.1103/PhysRevB.90.014110
    [62] MONACELLI L, CASULA M, NAKANO K, et al. Quantum phase diagram of high-pressure hydrogen [J]. Nature Physics, 2023, 19(6): 845–850. doi: 10.1038/s41567-023-01960-5
    [63] BORINAGA M, RIEGO P, LEONARDO A, et al. Anharmonic enhancement of superconductivity in metallic molecular Cmca-4 hydrogen at high pressure: a first-principles study [J]. Journal of Physics: Condensed Matter, 2016, 28(49): 494001. doi: 10.1088/0953-8984/28/49/494001
    [64] WEN L B, WU H, SUN H, et al. Profound softening and shear-induced melting of diamond under extreme conditions: an ab- initio molecular dynamics study [J]. Carbon, 2019, 155: 361–368. doi: 10.1016/j.carbon.2019.08.079
    [65] LI Z G, CHEN Q F, GU Y J, et al. Multishock compression of dense cryogenic hydrogen-helium mixtures up to 60 GPa: validating the equation of state calculated from first principles [J]. Physical Review B, 2018, 98(6): 064101. doi: 10.1103/PhysRevB.98.064101
    [66] RANIERI U, CONWAY L J, DONNELLY M E, et al. Formation and stability of dense methane-hydrogen compounds [J]. Physical Review Letters, 2022, 128(21): 215702. doi: 10.1103/PhysRevLett.128.215702
    [67] SONG X Q, YIN K T, WANG Y C, et al. Exotic hydrogen bonding in compressed ammonia hydrides [J]. The Journal of Physical Chemistry Letters, 2019, 10(11): 2761–2766. doi: 10.1021/acs.jpclett.9b00973
    [68] HEMLEY R J, MAO H K, SHEN G Y, et al. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures [J]. Science, 1997, 276(5316): 1242–1245. doi: 10.1126/science.276.5316.1242
    [69] MAO H K, BADRO J, SHU J F, et al. Strength, anisotropy, and preferred orientation of solid argon at high pressures [J]. Journal of Physics: Condensed Matter, 2006, 18(25): S963–S968. doi: 10.1088/0953-8984/18/25/S04
    [70] HEMLEY R J, MAO H K. Optical studies of hydrogen above 200 gigapascals: evidence for metallization by band overlap [J]. Science, 1989, 244(4911): 1462–1465. doi: 10.1126/science.244.4911.1462
    [71] NARAYANA C, LUO H, ORLOFF J, et al. Solid hydrogen at 342 GPa: no evidence for an alkali metal [J]. Nature, 1998, 393(6680): 46–49. doi: 10.1038/29949
    [72] LOUBEYRE P, OCCELLI F, LETOULLEC R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen [J]. Nature, 2002, 416(6881): 613–617. doi: 10.1038/416613a
    [73] EREMETS M I, TROYAN I A. Conductive dense hydrogen [J]. Nature Materials, 2011, 10(12): 927–931. doi: 10.1038/nmat3175
    [74] ZHA C S, LIU Z X, HEMLEY R J. Synchrotron infrared measurements of dense hydrogen to 360 GPa [J]. Physical Review Letters, 2012, 108(14): 146402. doi: 10.1103/PhysRevLett.108.146402
  • 加载中
图(6)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  71
  • PDF下载量:  122
出版历程
  • 收稿日期:  2023-08-16
  • 修回日期:  2023-09-01
  • 网络出版日期:  2023-10-09
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回