碳纤维-手撕钢复合材料的力学性能及除冰功能

闻贞 张国亮 蒋麒 李永存 郭章新 栾云博

闻贞, 张国亮, 蒋麒, 李永存, 郭章新, 栾云博. 碳纤维-手撕钢复合材料的力学性能及除冰功能[J]. 高压物理学报, 2023, 37(5): 054101. doi: 10.11858/gywlxb.20230661
引用本文: 闻贞, 张国亮, 蒋麒, 李永存, 郭章新, 栾云博. 碳纤维-手撕钢复合材料的力学性能及除冰功能[J]. 高压物理学报, 2023, 37(5): 054101. doi: 10.11858/gywlxb.20230661
WEN Zhen, ZHANG Guoliang, JIANG Qi, LI Yongcun, GUO Zhangxin, LUAN Yunbo. Mechanical Property and De-Icing Function of Carbon Fibre-Hand-Torn Steel Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054101. doi: 10.11858/gywlxb.20230661
Citation: WEN Zhen, ZHANG Guoliang, JIANG Qi, LI Yongcun, GUO Zhangxin, LUAN Yunbo. Mechanical Property and De-Icing Function of Carbon Fibre-Hand-Torn Steel Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054101. doi: 10.11858/gywlxb.20230661

碳纤维-手撕钢复合材料的力学性能及除冰功能

doi: 10.11858/gywlxb.20230661
基金项目: 国家自然科学基金(12041201);山西省基础研究计划项目(202203021211126,202203021211122)
详细信息
    作者简介:

    闻 贞(1995-),男,硕士,主要从事复合材料研究. E-mail:2531148360@qq.com

    通讯作者:

    栾云博(1984-),女,博士,副教授,主要从事复合材料研究. E-mail:luanyunbo@tyut.edu.cn

  • 中图分类号: O347; TB333

Mechanical Property and De-Icing Function of Carbon Fibre-Hand-Torn Steel Composites

  • 摘要: 碳纤维增强复合材料因其轻质高强等优异特性,在轨道交通、航空航天等领域具有重要作用。然而,作为高空飞行器表面结构材料,碳纤维复合材料在低温环境中存在力学性能衰减和结冰等问题,严重影响了其服役安全性。以单向碳纤维预浸料和不锈钢超薄带即手撕钢为原材料,采用铺层固化的方法,设计了不同裁剪形状的手撕钢与碳纤维铺层的“碳纤维-手撕钢”复合材料,并对其在电流驱动下的力学性能和除冰功能进行研究。研究表明,手撕钢不仅能够改善复合材料内部的应力分布,提升力学性能,而且由于手撕钢的电流致热效应,能够实现复合材料的温度调控,从而进一步改善材料的强度和吸能特性。此外,手撕钢的裁剪宽度对于调控电流通路及其致热效应具有重要影响,是优化材料力学性能和除冰功能的关键因素。研究结果对于“碳纤维-手撕钢”复合材料的力学设计和电流驱动除冰功能实现具有一定的指导意义,并有望在航天航空等领域得到重要应用。

     

  • 图  三点弯曲层合板铺层设计方案

    Figure  1.  Lay-up design scheme of three-point bending laminate

    图  不同电流通路宽度的手撕钢层合板

    Figure  2.  Hand-torn steel laminates with different current path widths

    图  三点弯曲样品通电实验和力学性能测试

    Figure  3.  Three-point bending sample energization test and mechanical property test

    图  3种样品的三点弯曲测试结果

    Figure  4.  Three-point bending test results of three kinds of samples

    图  碳纤维-手撕钢层合板在不同电流强度下的弯曲测试结果

    Figure  5.  Bending test results of carbon fibre-hand-torn steel laminates at different current strengths

    图  不同电流通路宽度层合板表面稳态温度随电流变化和温度场分布

    Figure  6.  Steady-state temperature variation of laminate surface with current and temperature field distribution for different current path widths

    图  电流通路宽度为10 mm的层合板通入2.5 A电流后不同时刻样品表面的温度场

    Figure  7.  Temperature field on the surface of a laminate with a current path width of 10 mm after applying 2.5 A current at different moments

    表  1  材料的基本属性

    Table  1.   Basic material properties

    Material Tensile strength/MPa Density/(g·cm3) Thickness/mm
    HTS 1130 7.26 0.02
    CFRP 1800 1.80 0.20
    下载: 导出CSV

    表  2  三点弯曲样品通电方案

    Table  2.   Three-point bending sample energization scheme

    SamplesCurrent/A
    CFRPNo power
    HTS-CFRPNo power
    Cut HTS-CFRP0, 0.5, 1.0, 1.5
    下载: 导出CSV

    表  3  电流致热样品通电方案

    Table  3.   Energizing samples with current heating

    Width of hand-torn steel/mmCurrent/A
    200, 0.5, 1.0, 1.5, 2.0, 2.5
    150, 0.5, 1.0, 1.5, 2.0, 2.5
    100, 0.5, 1.0, 1.5, 2.0, 2.5
    50, 0.5, 1.0, 1.5, 1.8
    下载: 导出CSV
  • [1] 吴明宇, 闫晓鹏, 郭章新,等. 低浓度氧化石墨烯改性环氧树脂基碳纤维层合板的拉伸性能 [J]. 高压物理学报, 2020, 34(6): 061301.

    WU M Y, YAN X P, GUO Z X, et al. Tensile properties of low concentration graphene oxide modified epoxy resin-based carbon fiber laminate [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 061301.
    [2] 张菡英, 刘明. 碳纤维复合材料的发展及应用 [J]. 工程塑料应用, 2015, 43(11): 132–135.

    ZHANG H Y, LIU M. Development and applications of carbon fiber reinforced polymer [J]. Engineering Plastics Applications, 2015, 43(11): 132–135.
    [3] CAO Y H, TAN W Y, WU Z L. Aircraft icing: an ongoing threat to aviation safety [J]. Aerospace Science and Technology, 2018, 75: 353–385. doi: 10.1016/j.ast.2017.12.028
    [4] 蒋天俊. 结冰对飞机飞行性能影响的研究 [D]. 南京: 南京航空航天大学, 2008: 1−4.

    JIANG T J. Investigation of icing accretion influences on aircraft flight performance [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 1−4.
    [5] AOKI T, ISHIKAWA T, KUMAZAWA H, et al. Cryogenic mechanical properties of CF/polymer composites for tanks of reusable rockets [J]. Advanced Composite Materials, 2001, 10(4): 349–356. doi: 10.1163/156855101753415373
    [6] 胡林权. 民用飞机机翼电加热防/除冰应用现状及技术难点 [J]. 航空科学技术, 2016, 27(7): 8–11.

    HU L Q. Application status and technical difficulties for civil aircraft wing electrothermal anti-/de-icing [J]. Aviation Science and Technology, 2016, 27(7): 8–11.
    [7] 周岸卿. PTC陶瓷在翼型防/除冰结构中的应用探索 [D]. 南京: 南京航空航天大学, 2017: 2−5.

    ZHOU A Q. Exploration and application of PTC ceramics in airfoil anti-/de-icing structure [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 2−5.
    [8] 马蕾, 王贤明, 宁亮. 飞机防冰涂料的研究进展 [J]. 中国涂料, 2014, 29(1): 11.

    MA L, WANG X M, NING L. Research progress of aircraft anti-icing coatings [J]. China Paint, 2014, 29(1): 11.
    [9] XUE X, ZHANG H, ZHANG Z. Effective anti-icing coating during the whole freezing process [C]//Abstract Book of the 6th International Conference on Nanoscience & Technology, 2015: 165−166.
    [10] 王智勇. 超薄不锈钢均热板制造工艺及其传热性能分析 [D]. 南昌: 南昌航空大学, 2020: 1−5.

    WANG Z Y. Manufacturing process and heat transfer performance analysis of ultra thin stainless steel vapor chamber [D]. Nanchang: Nanchang Hangkong University, 2020: 1−5.
    [11] 李艳. 碳纤维金属层板的制备与性能研究 [D]. 西安: 西安建筑科技大学, 2020: 25−45.

    LI Y. Preparation and performance study of carbon fiber metal laminates [D]. Xi’an: Xi’an University of Architecture and Technology, 2020: 25−45.
    [12] 马其华, 周琪, 甘学辉,等. 金属/碳纤维增强复合材料混合薄壁管的研究进展 [J]. 工程塑料应用, 2019, 47(8): 128–134. doi: 10.3969/j.issn.1001-3539.2019.08.027

    MA Q H, ZHOU Q, GAN X H, et al. Research progress of metal/carbon fiber reinforced composite hybrid thin-walled tubes [J]. Engineering Plastics Applications, 2019, 47(8): 128–134. doi: 10.3969/j.issn.1001-3539.2019.08.027
    [13] 张磊, 马小敏, 李如江,等. 纤维金属层合板的抗爆性能及失效机理 [J]. 高压物理学报, 2019, 33(1): 014202.

    ZHANG L, MA X M, LI R J, et al. Anti-explosion performance and failure mechanism of fiber-metal laminates [J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014202.
    [14] 陈健. 温度循环骤变对碳纤维增强复合材料机械性能的影响 [D]. 上海: 东华大学, 2020: 9−13.

    CHEN J. Effects of temperature cycling on mechanical properties of carbon fiber reinforced composites [D]. Shanghai: Donghua University, 2020: 9−13.
    [15] 于广, 魏化震, 李大勇, 等. 热处理温度对碳纤维增强聚酰亚胺复合材料性能影响 [J]. 工程塑料应用, 2020, 48(6): 62–67.

    YU G, WEI H Z, LI D Y, et al. Effect of heat treatment temperature on properties of polyimide/carbon fiber composites [J]. Engineering Plastics Applications, 2020, 48(6): 62–67.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  66
  • PDF下载量:  90
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-06-11
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回