20 L球型爆炸装置气液输送管段结构的优化设计

李峰 张晨雨 王悦 王博 张梦雨 荆亚东

李峰, 张晨雨, 王悦, 王博, 张梦雨, 荆亚东. 20 L球型爆炸装置气液输送管段结构的优化设计[J]. 高压物理学报, 2023, 37(4): 045301. doi: 10.11858/gywlxb.20230651
引用本文: 李峰, 张晨雨, 王悦, 王博, 张梦雨, 荆亚东. 20 L球型爆炸装置气液输送管段结构的优化设计[J]. 高压物理学报, 2023, 37(4): 045301. doi: 10.11858/gywlxb.20230651
LI Feng, ZHANG Chenyu, WANG Yue, WANG Bo, ZHANG Mengyu, JING Yadong. Optimization Design of Gas-Liquid Conveying Pipe Structure for 20 L Spherical Explosion Experimental Device[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 045301. doi: 10.11858/gywlxb.20230651
Citation: LI Feng, ZHANG Chenyu, WANG Yue, WANG Bo, ZHANG Mengyu, JING Yadong. Optimization Design of Gas-Liquid Conveying Pipe Structure for 20 L Spherical Explosion Experimental Device[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 045301. doi: 10.11858/gywlxb.20230651

20 L球型爆炸装置气液输送管段结构的优化设计

doi: 10.11858/gywlxb.20230651
基金项目: 国家自然科学基金(21865036,52064046);中国矿业大学煤炭资源与安全开采国家重点实验室-新疆工程学院联合基金(SKLCRSM-XJIEKF007);中央高校基本科研业务费专项资金(2023ZKPYAQ03)
详细信息
    作者简介:

    李 峰(1985-),男,博士,副教授,主要从事灾害风险评估及煤矿火灾控制研究. E-mail:lifengcumtb@126.com

    通讯作者:

    王 悦(1975-),女,博士,副教授,主要从事多相混合介质爆炸灾害演化动力学及灾害防控技术研究. E-mail:726572905@qq.com

  • 中图分类号: O359.1

Optimization Design of Gas-Liquid Conveying Pipe Structure for 20 L Spherical Explosion Experimental Device

  • 摘要: 以20 L球型爆炸装置中的气液输送管段为研究对象,结合数值模拟方法,分析了气液输送管段中气液两相流的流型结构和截面含气率特性,基于此对气液输送管段的曲率半径和水平管段长度进行优化设计。结果表明:在0.6 MPa压力下,C6H14、C7H16、C8H18和C10H22均可以形成稳定的环状流;随着压力升高,C6H14和C7H16的流型结构有趋于不稳定的趋势。在0.6~0.9 MPa压力下,当气液输送管段曲率半径为34 mm、管段长度在200~300 mm之间时,大部分液相呈膜状沿管壁运动,且液膜分布较均匀;气相在管段中心处高速流过,具有良好的气芯,形成的环状流流型结构更稳定。对气液输送管段的优化设计可使爆炸特性的测量更精确,也可为研究可燃液体燃料爆炸问题及工程设计提供参考。

     

  • 图  20 L球型爆炸实验系统

    Figure  1.  20 L spherical explosion experimental system

    图  气液输送管段的几何模型

    Figure  2.  Geometric model of gas-liquid transmission pipe section

    图  管道壁面与截面的网格划分

    Figure  3.  Grid division of pipe wall and section model

    图  不同网格条件下C8H18在0.8 MPa下的截面含气率分布

    Figure  4.  Distribution of gas content of C8H18 cross-section at 0.8 MPa under different grid conditions

    图  实验[12]与数值模拟结果的对比(单位:mm)

    Figure  5.  Comparison between experimental[12] and numerical simulation results (Unit: mm)

    图  实验与模拟得到的含气率对比

    Figure  6.  Comparison of gas content between experimental and numerical simulation results

    图  不同压力下4种物质的流型结构截面云图

    Figure  7.  Cross-section nephogram of flow structure of four substances under different pressure conditions

    图  不同压力下C8H18和C10H22的截面含气率分布

    Figure  8.  Distribution of void fraction at different pressures of C8H18 and C10H22

    图  0.6 MPa压力下4种物质的含气率对比

    Figure  9.  Comparison of gas content of four substances at 0.6 MPa

    图  10  不同曲率半径下C10H22的流型结构与截面含气率

    Figure  10.  Flow pattern structure and section air voids of C10H22 under different radius of curvature

    图  11  细化曲率半径下C10H22的流型结构云图

    Figure  11.  Cloud diagram of C10H22 flow pattern structure under refined curvature radius

    图  12  0.9 MPa下C10H22的流型结构

    Figure  12.  Diagram of flow pattern structure of C10H22 at 0.9 MPa

    表  1  气液两相物理参数

    Table  1.   Gas-liquid two-phase physical parameters

    MaterialDensity/(kg·m−3)Viscosity/(kPa·s)Surface tension/(N·m−1)
    Air1.2361.85
    C6H14669320.020 3
    C7H1668340.90.021 6
    C8H18700540.021 8
    C10H22730920.023 3
    下载: 导出CSV

    表  2  0.6 MPa压力下4种物质气液输送管段截面的含气率

    Table  2.   Cross section air voids of four substances in gas-liquid conveying pipeline section at 0.6 MPa

    Materiala1a2$ \beta $
    C6H140.911 20.654 01.4
    C7H160.878 00.680 51.3
    C8H180.856 00.655 71.3
    C10H220.912 20.678 01.3
    下载: 导出CSV

    表  3  4种物质在不同压力下形成较稳定环状流的管段范围

    Table  3.   Range of pipe sections with stable annular flow formed by four substances under different pressures

    MaterialRange of pipe section/mm
    0.6 MPa0.7 MPa0.8 MPa0.9 MPa
    C6H14230–300
    C7H16210–300
    C8H18200–300210–300210–300200–300
    C10H22210–300200–300210–300210–300
    下载: 导出CSV
  • [1] 王悦. 可燃液体燃料云雾形成和爆炸问题研究 [D]. 北京: 北京理工大学, 2016.

    WANG Y. Research on generation of mists and explosion characteristics for flammable liquid fuels [D]. Beijing: Beijing University of Technology, 2016.
    [2] 刘雪岭. 瞬态多相云雾浓度、湍流及其爆炸物理特征实验研究 [D]. 北京: 北京理工大学, 2016.

    LIU X L. The experimental study of physical and explosion characteristics on transient multiphase mists of concentration, turbulence [D]. Beijing: Beijing Institute of Technology, 2016.
    [3] 王悦, 白春华, 李斌, 等. 二次脉冲气动喷雾系统的设计与实验研究 [J]. 高压物理学报, 2015, 29(5): 347–355.

    WANG Y, BAI C H, LI B, et al. Design and experimental research on the double pulse pneumatic spray system [J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 347–355.
    [4] 凤文桢, 熊新宇, 高凯, 等. 点火延迟时间对镁粉尘云爆炸特性影响研究 [J]. 消防科学与技术, 2021, 40(1): 25-8. doi: 10.3210/fst.40.25

    FENG W Z, XIONG X Y, GAO K, et al. Influence of ignition delay time on explosion characteristics of magnesium dust cloud [J]. Fire Science and Technology, 2021, 40(1): 25–28. doi: 10.3210/fst.40.25
    [5] 黄勇, 赵庆贤, 刘龙飞, 等. 激波诱导油液柱变形、破碎及其雾化过程研究 [J]. 常州大学学报 (自然科学版), 2021, 33(4): 55–62.

    HUANG Y, ZHAO Q X, LIU L F, et al. Study of deformation, breakup and atomization of diesel fuel column by shock wave [J]. Journal of Changzhou University (Natural Science Edition), 2021, 33(4): 55–62.
    [6] SPITZER S H, ASKAR E, BENKE A, et al. Influence of pre-ignition pressure rise on safety characteristics of dusts and hybrid mixtures [J]. Fuel, 2022, 311: 122495. doi: 10.1016/j.fuel.2021.122495
    [7] 曹兴岩, 任婧杰, 毕明树, 等. 超细水雾雾化方式对甲烷爆炸过程影响的实验研究 [J]. 煤炭学报, 2017, 42(7): 1795–1802.

    CAO X Y, REN J J, BI M S, et al. Experiment study on effect of methane explosion process by atomization method of ultrafine water mist [J]. Journal of China Coal Society, 2017, 42(7): 1795–1802.
    [8] 张成均, 白春华. 基于20 L球罐的多相混合物扩散模拟 [J]. 中国安全生产科学技术, 2019, 15(4): 52–58.

    ZHANG C J, BAI C H. Diffusion simulation of multiphase mixture based on 20 L spherical vessel [J]. Journal of Safety Science and Technology, 2019, 15(4): 52–58.
    [9] 张江石, 刘建华. 分散度对铝粉爆炸敏感性的影响 [J]. 兵工学报, 2021, 42(5): 979–986.

    ZHANG J S, LIU J H. Effect of dispersity on explosion sensitivity of aluminum powder [J]. Acta Armamentarii, 2021, 42(5): 979–986.
    [10] 卢国菊, 于丽雅, 高彩军. 铝粉及铝镁混合粉的爆炸特性 [J]. 粉末冶金工业, 2022, 32(6): 82–85.

    LU G J, YU L Y, GAO C J. Study on the explosion characteristics of aluminium powder and aluminium magnesium mixed powder [J]. Powder Metallurgy Industry, 2022, 32(6): 82–85.
    [11] 吕启申, 臧小为, 潘旭海, 等. 温度和浓度对甲醇喷雾爆炸特性参数的影响 [J]. 爆炸与冲击, 2019, 39(9): 095402.

    LYU Q S, ZANG X W, PAN X H, et al. Effects of temperature and concentration on characteristic parameters of methanol explosion [J]. Explosion and Shock Waves, 2019, 39(9): 095402.
    [12] 刘可心, 刘炜, 孙亚松. 多因素耦合作用对甲烷爆炸特性的影响 [J]. 爆炸与冲击, 2023, 43(3): 032101.

    LIU K X, LIU W, SUN Y S. Influence of multi-factor coupling on methane explosion characteristics [J]. Explosion and Shock Waves, 2023, 43(3): 032101.
    [13] 王悦, 白春华. 乙醚云雾场燃爆参数实验研究 [J]. 爆炸与冲击, 2016, 36(4): 497–502.

    WANG Y, BAI C H. Experimental research on explosion parameters of diethyl ether mist [J]. Explosion and Shock Waves, 2016, 36(4): 497–502.
    [14] 李子丰. 基于VOF的气液两相流多尺度耦合算法 [D]. 沈阳: 沈阳化工大学, 2022.

    LI Z F. Multiscale coupling algorithm for gas-liquid two-phase flow based on VOF [D]. Shenyang: Shenyang University of Chemical Technology, 2022.
    [15] 高忠信, 邓杰, 葛新峰. 圆形弯管气液两相流数值模拟 [J]. 水利学报, 2009, 40(6): 696–702.

    GAO Z X, DENG J, GE X F. Simulation of bubbly two-phase turbulent flow in circular pipe bend [J]. Journal of Hydraulic Engineering, 2009, 40(6): 696–702.
    [16] 牛成林. 基于图像检测技术的气液两相流截面含气率测量实验研究 [J]. 新型工业化, 2017, 7(5): 26–31.

    NIU C L. Void fraction of vertical gas-liquid two-phase flow based on image detection method [J]. The Journal of New Industrialization, 2017, 7(5): 26–31.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  37
  • PDF下载量:  23
出版历程
  • 收稿日期:  2023-04-25
  • 修回日期:  2023-05-25
  • 录用日期:  2023-07-07
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回