火焰特征量对快速烤燃的影响

肖游 智小琦 王琦 于永利 范兴华

肖游, 智小琦, 王琦, 于永利, 范兴华. 火焰特征量对快速烤燃的影响[J]. 高压物理学报, 2022, 36(5): 055201. doi: 10.11858/gywlxb.20220557
引用本文: 肖游, 智小琦, 王琦, 于永利, 范兴华. 火焰特征量对快速烤燃的影响[J]. 高压物理学报, 2022, 36(5): 055201. doi: 10.11858/gywlxb.20220557
XIAO You, ZHI Xiaoqi, WANG Qi, YU Yongli, FAN Xinghua. Influence of Flame Characteristics on Fast Cook-off[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055201. doi: 10.11858/gywlxb.20220557
Citation: XIAO You, ZHI Xiaoqi, WANG Qi, YU Yongli, FAN Xinghua. Influence of Flame Characteristics on Fast Cook-off[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055201. doi: 10.11858/gywlxb.20220557

火焰特征量对快速烤燃的影响

doi: 10.11858/gywlxb.20220557
详细信息
    作者简介:

    肖 游(1996-),男,硕士研究生,主要从事战斗部毁伤技术研究. E-mail:1466407414@qq.com

    通讯作者:

    智小琦(1963-),女,博士,教授,主要从事战斗部毁伤技术及不敏感弹药研究.E-mail:zxq4060@sina.com

  • 中图分类号: TJ55

Influence of Flame Characteristics on Fast Cook-off

  • 摘要: 为研究快速烤燃下池火中火焰特征量对烤燃弹的影响,建立了池火的快速烤燃模型,得到了烤燃弹的传热特性,分析了烤燃过程中烤燃弹放置高度和油池尺寸对火焰特征量的影响。结果表明:随着烤燃弹放置高度的增加,烤燃弹表面最高温度区域由上表面转移到下表面,辐射热通量峰值由烤燃弹上方转移到烤燃弹下方;随着油池尺寸增加,烤燃弹各表面温度更加均匀,烤燃弹吸收的热通量增加,烤燃弹表面温度升高。因此,快速烤燃试验中烤燃弹的放置高度与油池尺寸均会对火焰特征量造成影响,进而影响烤燃弹的快速烤燃特性。

     

  • 图  快速烤燃试验现场布置

    Figure  1.  Layout of the fast cook-off test

    图  温度-时间曲线

    Figure  2.  Temperature-time curves

    图  响应后烤燃弹的破片残骸

    Figure  3.  Fragment debris of the cook-off bomb after response

    图  快速烤燃模型

    Figure  4.  Model of the fast cook-off

    图  计算时间与网格尺寸的关系

    Figure  5.  Relation between calculation time and mesh size

    图  计算精度与网格尺寸的关系

    Figure  6.  Relation between accuracy and mesh size

    图  池火快速烤燃模拟场景

    Figure  7.  Simulated scene of the fast cook-off in pool fire

    图  火焰中测点温度随时间变化曲线

    Figure  8.  Temperature-time curves of gauging points in flame

    图  烤燃弹中心截面温度和辐射热通量

    Figure  9.  Temperature and radiation heat flux of the central cross-section of cook-off bomb

    图  10  烤燃弹模型与测点示意图

    Figure  10.  Schematic diagram of the cook-off bomb model and gauging points

    图  11  壳体不同位置的温度随时间变化曲线

    Figure  11.  Temperature-time curves at different positions of shell

    图  12  测点设置示意图

    Figure  12.  Schematic diagram of gauging point setting

    图  13  药柱径向和轴向温度随距几何中心距离的变化曲线

    Figure  13.  Variations of temperature in radial and axial directions with distance to the geometric center of charge

    图  14  烤燃弹放置高度不同时各表面温度变化曲线

    Figure  14.  Variations of each surface temperature with different heights of the cook-off bomb

    图  15  烤燃弹各表面温度随油池面积的变化

    Figure  15.  Variations of surface temperature of the cook-off bomb with the area of oil pool

    表  1  炸药和壳体的物性参数

    Table  1.   Physical parameters of explosives and shell

    Materialρ/(kg·m−3)cV/(J·kg−1·K−1)λ/(W·m−1·K−1)
    RDX164011300.25
    TNT151016110.20
    Steel803050243.00
    下载: 导出CSV

    表  2  炸药反应动力学参数

    Table  2.   Reaction kinetic parameters of explosives

    Explosive$ i $Ei /(J·mol−1)Zi /s−1Qi /(J·kg−1)
    RDX12.04×1056.40×10172.68×106
    21.89×1054.74×1017−8.03×106
    31.43×1059.54×1014−6.56×107
    TNT41.95×1051.59×10151.26×105
    51.60×1051.96×1012−3.40×105
    61.47×1052.39×1011−3.40×105
    下载: 导出CSV

    表  3  JP-8燃料的燃烧参数

    Table  3.   Combustion parameters of JP-8 fuel

    $\Delta H/\text{(J}\cdot {\text{kg} }{^{ {-1} }})$$ \alpha $$\dot{Q}/(\text{kW}\cdot{\text{m} }{^{ {-2} }})$ρ/(g·cm−3)
    43000100016000.81
    下载: 导出CSV

    表  4  烤燃弹放置高度不同时各表面的温度

    Table  4.   Temperatures of each surfaces at different heights of the cook-off bomb

    Height/mTemperature/℃
    Surface1Surface 2Surface 3Surface 4Surface 5Surface 6
    0.33797.5772.9804.4776.3764.2765.4
    0.36805.4766.8799.0759.3764.4767.3
    0.39817.1771.8798.5749.6754.9756.8
    0.42842.4769.5791.9751.1736.5755.4
    下载: 导出CSV

    表  5  烤燃弹放置高度不同时各表面的热通量

    Table  5.   Heat flux of each surface of the cook-off bomb with different heights

    Height/m${\dot q''_{\rm {tot} } }$/(kW·m−2)
    Surface 1Surface 2Surface 3Surface 4Surface 5Surface 6
    0.3378.973.480.274.571.271.6
    0.3680.671.378.270.071.472.0
    0.3984.072.878.367.969.469.6
    0.4292.173.176.868.965.369.5
    Height/m${\dot q''_{\rm {rad} } }$/(kW·m−2)
    Surface 1Surface 2Surface 3Surface 4Surface 5Surface 6
    0.3374.867.676.568.765.966.2
    0.3676.966.074.964.465.966.6
    0.3980.467.374.962.163.863.9
    0.4288.266.873.262.559.663.7
    下载: 导出CSV

    表  6  油池尺寸不同时烤燃弹各表面温度

    Table  6.   Each surface temperature of the bomb burned in the oil pool with different sizes

    Oil pool size/
    (mm×mm)
    Area/m2Surface temperature/℃
    Surface 1Surface 2Surface 3Surface 4Surface 5Surface 6
    1500×12001.80817.1771.8798.5750.0754.9756.8
    2100×17003.57853.9821.7862.9802.5851.4856.4
    3000×24007.20838.8876.1903.2878.6868.3868.4
    下载: 导出CSV

    表  7  油池尺寸不同时烤燃弹各表面热通量

    Table  7.   Heat flux of each surface of the bomb burned in the oil pool with different sizes

    Oil pool size/
    (mm×mm)
    ${\dot q''_{\rm {tot} } }$/( kW·m−2)
    Surface 1Surface 2Surface 3Surface 4Surface 5Surface 6
    1500×1200 84.0 72.8 78.3 67.9 69.4 69.6
    2100×170095.887.798.782.097.198.7
    3000×240091.4105.0112.9105.7103.2103.1
    Oil pool size/
    (mm×mm)
    ${\dot q''_{\rm {rad}} }$/( kW·m−2)
    Surface 1Surface 2Surface 3Surface 4Surface 5Surface 6
    1500×120080.467.374.962.163.863.9
    2100×170091.981.894.976.391.492.8
    3000×240087.399.4109.2100.397.597.4
    下载: 导出CSV
  • [1] GROSS M L, HEDMAN T D, MEREDITH K V. Considerations for fast cook-off simulations [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(6): 1036–1043. doi: 10.1002/prep.201500253
    [2] YANG H W, YU Y G, YE R, et al. Cook-off test and numerical simulation of AP/HTPB composite solid propellant [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 1–9. doi: 10.1016/j.jlp.2015.11.028
    [3] SAHIN H, NARIN B, KURTULUS D F. Development of a design methodology against fast cook-off threat for insensitive munitions [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 580–587. doi: 10.1002/prep.201500333
    [4] AYDEMIR E, ULAS A. A numerical study on the thermal initiation of a confined explosive in 2-D geometry [J]. Journal of Hazardous Materials, 2011, 186(1): 396–400. doi: 10.1016/j.jhazmat.2010.11.015
    [5] ASANTE D O, KIM S, CHAE J, et al. CFD cook-off simulation and thermal decomposition of confined high energetic material [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 699–705. doi: 10.1002/prep.201400296
    [6] YE Q, YU Y G. Numerical simulation of cook-off characteristics for AP/HTPB [J]. Defence Technology, 2018, 14(5): 451–456. doi: 10.1016/j.dt.2018.06.013
    [7] 王帅. 输运热对炸药快烤响应特性影响的研究 [D]. 太原: 中北大学, 2020.

    WANG S. Study on the effect of transport heat on the response characteristics of explosives fast cook-off [D]. Taiyuan: North University of China, 2020.
    [8] REHM R G, BAUM H R. The equations of motion for thermally driven, buoyant flows [J]. Journal of Research of the National Bureau of Standards, 1978, 83(3): 297–308. doi: 10.6028/jres.083.019
    [9] WICKSTRÖM U, ROBBINS A, BAKER G. The use of adiabatic surface temperature to design structures for fire exposure [J]. Journal of Structural Fire Engineering, 2011, 2(1): 21–28. doi: 10.1260/2040-2317.2.1.21
    [10] 葛绍岩, 那鸿悦. 热辐射性质及其测量 [M]. 北京: 科学出版社, 1989.

    GE S Y, NA H Y. Thermal radiation properties and measurement [M]. Beijing: Science Press, 1989.
    [11] 杨世铭, 陶文铨. 传热学 [M]. 北京: 高等教育出版社, 2006.

    YANG S M, TAO W Q. Heat transfer [M]. Beijing: Higher Education Press, 2006.
    [12] WICKSTRÖM U. The plate thermometer: a simple instrument for reaching harmonized fire resistance tests [J]. Fire Technology, 1994, 30(2): 195–208. doi: 10.1007/BF01040002
    [13] 任玉新, 陈海昕. 计算流体力学基础 [M]. 北京: 清华大学出版社, 2006.

    REN Y X, CHEN H X. Fundamentals of computational fluid dynamics [M]. Beijing: Tsinghua University Press, 2006.
    [14] MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives [C]//Proceedings of the 7th Symposium on Detonation. Annapolis, Maryland, US: Office of Naval Research, 1981.
    [15] ABD-ELGHANY M, ELBEIH A, HASSANEIN S. Thermal behavior and decomposition kinetics of RDX and RDX/HTPB composition using various techniques and methods [J]. Central European Journal of Energetic Materials, 2016, 13(3): 714–735. doi: 10.22211/cejem/64954
    [16] 陈朗, 王沛, 冯长根. 考虑相变的炸药烤燃数值模拟计算 [J]. 含能材料, 2009, 17(5): 568–573. doi: 10.3969/j.issn.1006-9941.2009.05.017

    CHEN L, WANG P, FENG C G. Numerical simulation of cook-off about phase transition of explosive [J]. Chinese Journal of Energetic Materials, 2009, 17(5): 568–573. doi: 10.3969/j.issn.1006-9941.2009.05.017
    [17] 徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响 [J]. 高压物理学报, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657

    XU R, ZHI X Q, WANG S. Influence of venting structure on the cook-off response intensity of composition B [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
    [18] COOKE J A, BELLUCCI M, SMOOKE M D, et al. Computational and experimental study of JP-8, a surrogate, and its components in counterflow diffusion flames [J]. Proceedings of the Combustion Institute, 2005, 30(1): 439–446. doi: 10.1016/j.proci.2004.08.046
    [19] VIOLI A, YAN S, EDDINGS E G, et al. Experimental formulation and kinetic model for JP-8 surrogate mixtures [J]. Combustion Science and Technology, 2002, 174(11/12): 399–417. doi: 10.1080/00102200215080
    [20] CATHONNET M, VOISIN D, ETSOULI A, et al. Kerosene combustion modelling using detailed and reduced chemical kinetic mechanisms [C]// Symposium Applied Vehicle Technology Panel on Gas Turbine Engine Combustion (RTO Meeting Proceedings). Lisbon, Portugal: NATO Research and Technology Organisation, 1999.
    [21] 曾娇. 开放空间航空煤油池火燃烧数值模拟 [D]. 哈尔滨: 哈尔滨工程大学, 2016.

    ZENG J. Numerical simulation of aviation fuel pool fire in open air [D]. Harbin: Harbin Engineering University, 2016.
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  612
  • HTML全文浏览量:  217
  • PDF下载量:  38
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-04-20
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回