高能量密度氮的研究进展

袁嘉男 李建福 王晓丽

袁嘉男, 李建福, 王晓丽. 高能量密度氮的研究进展[J]. 高压物理学报, 2024, 38(4): 040102. doi: 10.11858/gywlxb.20230797
引用本文: 袁嘉男, 李建福, 王晓丽. 高能量密度氮的研究进展[J]. 高压物理学报, 2024, 38(4): 040102. doi: 10.11858/gywlxb.20230797
YUAN Jianan, LI Jianfu, WANG Xiaoli. Research Progress of High Energy Density Nitrogen[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040102. doi: 10.11858/gywlxb.20230797
Citation: YUAN Jianan, LI Jianfu, WANG Xiaoli. Research Progress of High Energy Density Nitrogen[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040102. doi: 10.11858/gywlxb.20230797

高能量密度氮的研究进展

doi: 10.11858/gywlxb.20230797
基金项目: 国家自然科学基金(11974154);山东省自然科学基金(ZR2022MA004);泰山学者工程专项经费;烟台市省级以上领军人才专项配套经费
详细信息
    作者简介:

    袁嘉男(1994-),男,博士,讲师,主要从事高压下富氮体系研究. E-mail:jnyuan@ytu.edu.cn

    通讯作者:

    李建福(1977-),男,博士,教授,主要从事高压下物质结构与性质研究. E-mail:jianfuli@ytu.edu.cn

    王晓丽(1976-),女,博士,教授,主要从事高压下物质结构与性质研究. E-mail:xlwang@ytu.edu.cn

  • 中图分类号: O521.2

Research Progress of High Energy Density Nitrogen

  • 摘要: 氮在常压下是非常稳定的元素,以氮气分子形式存在。研究发现,氮在高温高压下能够形成聚合结构,这种结构具有极高的能量密度,而且分解产物为无污染的氮气,从应用角度上看,它能够作为新型环保高能量密度材料。随后,人们对其进行了大量的研究,得到了氮在高压条件下的相图,并且合成出立方偏转氮、层状聚合氮等结构。然而,纯氮聚合结构的合成条件比较严苛,在常压下很难保存。人们又转向分子结构氮和惰性气体氮化物等,希望能够得到常压下稳定的高能量密度氮结构。为此,针对目前高能量密度氮的理论和实验进展进行了简要的介绍,并对未来高能量密度氮的发展方向进行了探讨。

     

  • 图  (a) cg-N的原胞和延伸结构,(b) cg-N的XRD谱(波长λ=0.41686 Å)[8]

    Figure  1.  (a) Primitive cell and extended structure of cg-N; (b) XRD spectrum of cg-N (wave length λ=0.41686 Å)[8]

    图  (a) Pba2和P212121的原胞和延伸结构[15],(b) N10的结构及ELF[20],(c) Pnnm相的能带结构和各种结构的带隙随压强的变化[21],(d) 100~400 GPa压强区间聚合氮的相图[15],(e) 100~500 GPa压强范围内聚合氮的相图[20],(f) 0~14 TPa压强范围内聚合氮的相图[22]HHBPHPba2分别为聚合氮、BP相和Pba2相的焓,ΔH为聚合氮与P4/nbm相的焓差)

    Figure  2.  (a) Primitive cell and extended structures of Pba2 and P212121[15]; (b) structure and ELF of N10[20]; (c) band structure of Pnnm phase and the band gap variation with pressure for various structures[21]; (d) phase diagram of polynitrogen from 100 GPa to 400 GPa[15]; (e) phase diagram of polynitrogen from 100 GPa to 500 GPa[20]; (f) phase diagram of polynitrogen from 0 TPato 14 TPa[22] (H, HBP, HPba2 represent the enthalpies of nitrogen polymeric phases, BP phase and Pba2 phase, respectively,and ΔH represents the enthalpy difference between various pure nitrogen polymeric phases and the P4/nbm phase.)

    图  (a) 室温150 GPa下激光加热氮气的拉曼光谱、LP-N的2个特征振动频移随压力的变化与cg-N的对比、层状Pba2的晶体结构与三维结构的对比(左侧插图中,A、B、C分别代表黑色非晶态、LP-N、cg-N)[23],(b) HLP-N的X射线散射谱以及晶体结构[25],(c) BP-N的晶体结构[26]

    Figure  3.  (a) Raman spectra of laser-heated nitrogen at 150 GPa and ambient temperature, the pressure-dependent shifts of two characteristic vibration of LP-N shown in comparison with that of cg-N, and the comparison of the crystal structure and three-dimensional structure of layered Pba2 (A, B and C represent black amorphous, LP-N, and cg-N, respectively)[23]; (b) X-ray scattering spectrum and crystal structure of HLP-N[25]; (c) the crystal structure of BP-N[26]

    图  (a) N8的分子结构和晶体结构[34],(b) 0~60 GPa压强范围内各结构的焓[34],(c) N6链的电子结构[35],(d) N6分子组成的晶体结构及其焓[35]

    Figure  4.  (a) Structure and crystal structure of N8 molecule[34]; (b) enthalpy values of various structures from 0 GPa to 60 GPa[34];(c) electronic structure of N6 chain[35]; (d) crystal structure and enthalpy values of N6 molecule[35]

    图  (a) V型、P型以及I型N10的晶体结构[38],(b) N10分子的可能合成路径[39],(c) 0~80 GPa压强区间的焓值[38],(d) N16的分子结构[40],(e) N16分子的分解路径[40]

    Figure  5.  (a) Crystal structures of N10 for V-type, P-type, and I-type[38]; (b) possible synthesis path of N10 molecule[39]; (c) enthalpy values from 0 GPa to 80 GPa[38]; (d) structure of N16 molecule[40]; (e) decomposition path of N16 molecule[40]

    图  (a) P4/nmm-BeN4的成键模式[54],(b) P21/m-CuN5的可能合成路径[51],(c) Ga-N化合物的晶体结构[53],(d) 85 GPa下Ga-N化合物的XRD谱[53]

    Figure  6.  (a) Chemical bonding pattern of P4/nmm-BeN4[54]; (b) possible synthesis route of P21/m-CuN5[51]; (c) crystal structures of Ga-N compounds[53]; (d) XRD patterns of Ga-N compounds at 85 GPa[53]

    图  (a) XeN6的晶体结构和成键性质[55],(b) HeN4的晶体结构和成键性质[56],(c) He-N体系的晶体结构[57],(d) Ne-N体系的晶体结构以及纯氮框架[58]

    Figure  7.  (a) Crystal structure and bonding properties of XeN6[55]; (b) crystal structure and bonding properties of HeN4[56]; (c) crystal structure of He-N compounds[57]; (d) crystal structures of Ne-N compounds and pure nitrogen[58]

  • [1] MAILHIOT C, YANG L H, MCMAHAN A K. Polymeric nitrogen [J]. Physical Review B, 1992, 46(22): 14419–14435. doi: 10.1103/PhysRevB.46.14419
    [2] MCMAHAN A K, LESAR R. Pressure dissociation of solid nitrogen under 1 Mbar [J]. Physical Review Letters, 1985, 54(17): 1929–1932. doi: 10.1103/PhysRevLett.54.1929
    [3] MARTIN R M, NEEDS R J. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures [J]. Physical Review B, 1986, 34(8): 5082–5092. doi: 10.1103/PhysRevB.34.5082
    [4] LEWIS S P, COHEN M L. High-pressure atomic phases of solid nitrogen [J]. Physical Review B, 1992, 46(17): 11117–11120. doi: 10.1103/PhysRevB.46.11117
    [5] LI Q S, LIU Y D. Theoretical studies of the N6 potential energy surface [J]. The Journal of Physical Chemistry A, 2002, 106(41): 9538–9542. doi: 10.1021/jp0258917
    [6] ALEMANY M M G, MARTINS J L. Density-functional study of nonmolecular phases of nitrogen: metastable phase at low pressure [J]. Physical Review B, 2003, 68(2): 024110. doi: 10.1103/PhysRevB.68.024110
    [7] CARACAS R, HEMLEY R J. New structures of dense nitrogen: pathways to the polymeric phase [J]. Chemical Physics Letters, 2007, 442(1/2/3): 65–70. doi: 10.1016/j.cplett.2007.05.053
    [8] EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [9] EREMETS M I, GAVRILIUK A G, SEREBRYANAYA N R, et al. Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures [J]. The Journal of Chemical Physics, 2004, 121(22): 11296–11300. doi: 10.1063/1.1814074
    [10] BENCHAFIA E M, YAO Z H, YUAN G, et al. Cubic gauche polymeric nitrogen under ambient conditions [J]. Nature Communications, 2017, 8(1): 930.
    [11] KAMLET M J, JACOBS S J. Chemistry of detonations. Ⅰ. a simple method for calculating detonation properties of C-H-N-O explosives [J]. The Journal of Chemical Physics, 1968, 48(1): 23−35.
    [12] HANG G Y, YU W L, WANG T, et al. Molecular dynamics calculation on structures, stabilities, mechanical properties, and energy density of CL-20/FOX-7 cocrystal explosives [J]. Journal of Molecular Modeling, 2017, 23(12): 362. doi: 10.1007/s00894-017-3533-3
    [13] GONCHAROV A F, GREGORYANZ E, MAO H K, et al. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa [J]. Physical Review Letters, 2000, 85(6): 1262–1265. doi: 10.1103/PhysRevLett.85.1262
    [14] WANG X L, HE Z, MA Y M, et al. Prediction of a new layered phase of nitrogen from first-principles simulations [J]. Journal of Physics: Condensed Matter, 2007, 19(42): 425226. doi: 10.1088/0953-8984/19/42/425226
    [15] MA Y M, OGANOV A R, LI Z W, et al. Novel high pressure structures of polymeric nitrogen [J]. Physical Review Letters, 2009, 102(6): 065501. doi: 10.1103/PhysRevLett.102.065501
    [16] PICKARD C J, NEEDS R J. High-pressure phases of nitrogen [J]. Physical Review Letters, 2009, 102(12): 125702. doi: 10.1103/PhysRevLett.102.125702
    [17] MATTSON W D, SANCHEZ-PORTAL D, CHIESA S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations [J]. Physical Review Letters, 2004, 93(12): 125501. doi: 10.1103/PhysRevLett.93.125501
    [18] ZAHARIEV F, HOOPER J, ALAVI S, et al. Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations [J]. Physical Review B, 2007, 75(14): 140101. doi: 10.1103/PhysRevB.75.140101
    [19] WANG X L, TIAN F B, WANG L C, et al. Structural stability of polymeric nitrogen: a first-principles investigation [J]. The Journal of Chemical Physics, 2010, 132(2): 024502. doi: 10.1063/1.3290954
    [20] WANG X L, WANG Y C, MIAO M S, et al. Cagelike diamondoid nitrogen at high pressures [J]. Physical Review Letters, 2012, 109(17): 175502. doi: 10.1103/PhysRevLett.109.175502
    [21] WANG X L, TIAN F B, WANG L, et al. Predicted novel metallic metastable phases of polymeric nitrogen at high pressures [J]. New Journal of Physics, 2013, 15(1): 013010. doi: 10.1088/1367-2630/15/1/013010
    [22] SUN J, MARTINEZ-CANALES M, KLUG D D, et al. Stable all-nitrogen metallic salt at terapascal pressures [J]. Physical Review Letters, 2013, 111(17): 175502. doi: 10.1103/PhysRevLett.111.175502
    [23] TOMASINO D, KIM M, SMITH J, et al. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity [J]. Physical Review Letters, 2014, 113(20): 205502. doi: 10.1103/PhysRevLett.113.205502
    [24] ADELEKE A A, GRESCHNER M J, MAJUMDAR A, et al. Single-bonded allotrope of nitrogen predicted at high pressure [J]. Physical Review B, 2017, 96(22): 224104. doi: 10.1103/PhysRevB.96.224104
    [25] LANIEL D, GENESTE G, WECK G, et al. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa [J]. Physical Review Letters, 2019, 122(6): 066001. doi: 10.1103/PhysRevLett.122.066001
    [26] LANIEL D, WINKLER B, FEDOTENKO T, et al. High-pressure polymeric nitrogen allotrope with the black phosphorus structure [J]. Physical Review Letters, 2020, 124(21): 216001. doi: 10.1103/PhysRevLett.124.216001
    [27] JI C, ADELEKE A A, YANG L X, et al. Nitrogen in black phosphorus structure [J]. Science Advances, 2020, 6(23): eaba9206. doi: 10.1126/sciadv.aba9206
    [28] LI Q S, ZHAO J F. Theoretical study of potential energy surfaces for N12 clusters [J]. The Journal of Physical Chemistry A, 2002, 106(21): 5367–5372. doi: 10.1021/jp020110n
    [29] STROUT D L. Cage isomers of N14 and N16 : nitrogen molecules that are not a multiple of six [J]. The Journal of Physical Chemistry A, 2004, 108(49): 10911–10916. doi: 10.1021/jp046496e
    [30] SAMARTZIS P C, WODTKE A M. All-nitrogen chemistry: how far are we from N60? [J]. International Reviews in Physical Chemistry, 2006, 25(4): 527–552. doi: 10.1080/01442350600879319
    [31] REN Y, WANG X, WONG N B, et al. Theoretical study of the N10 clusters without double bonds [J]. International Journal of Quantum Chemistry, 2001, 82(1): 34–43. doi: 10.1002/1097-461X(2001)82:1<34::AID-QUA1013>3.0.CO;2-1
    [32] GUAN J, ZHANG S W, XU W G, et al. A quantum chemical study of N14 cluster [J]. Structural Chemistry, 2004, 15(2): 121–132. doi: 10.1023/B:STUC.0000011247.54952.89
    [33] HA T K, SULEIMENOV O, NGUYEN M T. A quantum chemical study of three isomers of N20 [J]. Chemical Physics Letters, 1999, 315(5/6): 327–334. doi: 10.1016/S0009-2614(99)01271-3
    [34] HIRSHBERG B, GERBER R B, KRYLOV A I. Calculations predict a stable molecular crystal of N8 [J]. Nature Chemistry, 2014, 6(1): 52–56. doi: 10.1038/nchem.1818
    [35] GRESCHNER M J, ZHANG M, MAJUMDAR A, et al. A new allotrope of nitrogen as high-energy density material [J]. The Journal of Physical Chemistry A, 2016, 120(18): 2920–2925. doi: 10.1021/acs.jpca.6b01655
    [36] ZHANG C, SUN C G, HU B C, et al. Synthesis and characterization of the pentazolate anion cyclo- $ {\rm N_5^-} $ in (N5)6(H3O)3(NH4)4Cl [J]. Science, 2017, 355(6323): 374–376. doi: 10.1126/science.aah3840
    [37] XU Y G, WANG Q, SHEN C, et al. A series of energetic metal pentazolate hydrates [J]. Nature, 2017, 549(7670): 78–81. doi: 10.1038/nature23662
    [38] LIU S J, ZHAO L, YAO M G, et al. Novel all-nitrogen molecular crystals of aromatic N10 [J]. Advanced Science, 2020, 7(10): 1902320. doi: 10.1002/advs.201902320
    [39] BONDARCHUK S V. Bipentazole (N10): a low-energy molecular nitrogen allotrope with high intrinsic stability [J]. The Journal of Physical Chemistry Letters, 2020, 11(14): 5544–5548. doi: 10.1021/acs.jpclett.0c01542
    [40] ZHAO L, LIU S J, CHEN Y Z, et al. A novel all-nitrogen molecular crystal N16 as a promising high-energy-density material [J]. Dalton Transactions, 2022, 51(24): 9369–9376. doi: 10.1039/D2DT00820C
    [41] YUAN J N, XIA K, DING C, et al. High-energy-density metal nitrides with armchair chains [J]. Matter and Radiation at Extremes, 2022, 7(3): 038402. doi: 10.1063/5.0087168
    [42] LI F, WANG Y, WU H, et al. Benzene-like N6 rings in a Be2N6 monolayer: a stable 2D semiconductor with high carrier mobility [J]. Journal of Materials Chemistry C, 2017, 5(44): 11515–11521. doi: 10.1039/C7TC03363J
    [43] LIU Z, LI D, WEI S L, et al. Bonding properties of aluminum nitride at high pressure [J]. Inorganic Chemistry, 2017, 56(13): 7494–7500. doi: 10.1021/acs.inorgchem.7b00980
    [44] PENG F, YAO Y S, LIU H Y, et al. Crystalline LiN5 predicted from first-principles as a possible high-energy material [J]. The Journal of Physical Chemistry Letters, 2015, 6(12): 2363–2366. doi: 10.1021/acs.jpclett.5b00995
    [45] BYKOV M, BYKOVA E, APRILIS G, et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains [J]. Nature Communications, 2018, 9(1): 2756. doi: 10.1038/s41467-018-05143-2
    [46] XIA K, YUAN J N, ZHENG X X, et al. Predictions on high-power trivalent metal pentazolate salts [J]. The Journal of Physical Chemistry Letters, 2019, 10(20): 6166–6173. doi: 10.1021/acs.jpclett.9b02383
    [47] YUAN J N, XIA K, WU J F, et al. High-energy-density pentazolate salts: CaN10 and BaN10 [J]. Science China Physics, Mechanics & Astronomy, 2021, 64(1): 218211.
    [48] YUAN J N, CHI D, COGOLLO-OLIVO B H, et al. Prediction of novel tetravalent metal pentazolate salts with anharmonic effect [J]. Fundamental Research, 2022. DOI: 10.1016/j.fmre.2022.10.017.
    [49] XIA K, GAO H, LIU C, et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search [J]. Science Bulletin, 2018, 63(13): 817–824. doi: 10.1016/j.scib.2018.05.027
    [50] XIA K, ZHENG X X, YUAN J N, et al. Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts [J]. The Journal of Physical Chemistry C, 2019, 123(16): 10205–10211. doi: 10.1021/acs.jpcc.8b12527
    [51] LI J F, SUN L, WANG X L, et al. Simple route to metal cyclo-N5-salt: high-pressure synthesis of CuN5 [J]. The Journal of Physical Chemistry C, 2018, 122(39): 22339–22344. doi: 10.1021/acs.jpcc.8b08924
    [52] LIN J N, PENG D, WANG Q L, et al. Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions [J]. Physical Chemistry Chemical Physics, 2021, 23(11): 6863–6870. doi: 10.1039/D0CP05402J
    [53] ZHAI H, XU R, DAI J H, et al. Stabilized nitrogen framework anions in the Ga-N system [J]. Journal of the American Chemical Society, 2022, 144(47): 21640–21647. doi: 10.1021/jacs.2c09056
    [54] LIN J N, WANG F X, RUI Q, et al. A novel square planar N42-ring with aromaticity in BeN4 [J]. Matter and Radiation at Extremes, 2022, 7(3): 038401. doi: 10.1063/5.0084802
    [55] PENG F, WANG Y C, WANG H, et al. Stable xenon nitride at high pressures [J]. Physical Review B, 2015, 92(9): 094104. doi: 10.1103/PhysRevB.92.094104
    [56] LI Y W, FENG X L, LIU H Y, et al. Route to high-energy density polymeric nitrogen t-N via He-N compounds [J]. Nature Communications, 2018, 9(1): 722. doi: 10.1038/s41467-018-03200-4
    [57] HOU J Y, WENG X J, OGANOV A R, et al. Helium-nitrogen mixtures at high pressure [J]. Physical Review B, 2021, 103(6): L060102. doi: 10.1103/PhysRevB.103.L060102
    [58] LIU L L, ZHANG S T, ZHANG H J. Pressure-driven Ne-bearing polynitrides with ultrahigh energy density [J]. Chinese Physics Letters, 2022, 39(5): 056102. doi: 10.1088/0256-307X/39/5/056102
  • 加载中
图(7)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  100
  • PDF下载量:  69
出版历程
  • 收稿日期:  2023-11-15
  • 修回日期:  2023-12-26
  • 网络出版日期:  2024-03-30
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回