高压固相拓扑聚合合成纳米碳材料

费云帆 李阔 郑海燕

费云帆, 李阔, 郑海燕. 高压固相拓扑聚合合成纳米碳材料[J]. 高压物理学报, 2023, 37(6): 060101. doi: 10.11858/gywlxb.20230749
引用本文: 费云帆, 李阔, 郑海燕. 高压固相拓扑聚合合成纳米碳材料[J]. 高压物理学报, 2023, 37(6): 060101. doi: 10.11858/gywlxb.20230749
FEI Yunfan, LI Kuo, ZHENG Haiyan. Synthesis of Nano-Carbon Materials by High Pressure Solid-State Topochemical Polymerization[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 060101. doi: 10.11858/gywlxb.20230749
Citation: FEI Yunfan, LI Kuo, ZHENG Haiyan. Synthesis of Nano-Carbon Materials by High Pressure Solid-State Topochemical Polymerization[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 060101. doi: 10.11858/gywlxb.20230749

高压固相拓扑聚合合成纳米碳材料

doi: 10.11858/gywlxb.20230749
基金项目: 国家自然科学基金(22022101,21875006,21771011);国家重点研发计划(2019YFA0708502)
详细信息
    作者简介:

    费云帆(2000-),男,博士研究生,主要从事高压下碳材料的精准合成研究. E-mail:yunfan.fei@hpstar.ac.cn

    通讯作者:

    郑海燕(1982-),女,博士,研究员,主要从事碳基材料高压精准合成研究. E-mail:zhenghy@hpstar.ac.cn

  • 中图分类号: O521.2

Synthesis of Nano-Carbon Materials by High Pressure Solid-State Topochemical Polymerization

  • 摘要: 碳原子多样的杂化方式使得碳材料具有复杂的结构和性能。寻找并开发具有新结构的碳材料,实现碳材料的精准可控合成是碳材料研究的重要方向。高压(高于1 GPa)可以有效地压缩分子间距,促进不饱和分子发生聚合,为“自下而上”合成碳材料提供了新的策略与机遇。高压下的化学反应多为固相反应,反应分子受到晶格的约束,表现出拓扑化学反应的特点。这意味着可以通过控制反应物的晶体结构调控反应路线,进而合成具有特定结构和功能的碳材料。本文报道了利用高压固相拓扑聚合方法合成聚烯烃、聚炔化合物、金刚石基纳米线、碳纳米带、石墨烷以及高电荷离子型聚合物等多种碳材料的研究进展,并简要介绍高压下化学反应的特点与机制。

     

  • 图  在0.2 GPa、99 K时乙烯Ⅰ相(P21/n, $C_{2h}^5$, Z = 2)的晶体结构[40](升压产生的各向异性压缩(沿b轴减小16.7%,沿ac轴分别减小约2%)使沿a轴的最近邻分子的碳原子间距(3.527 Å)与位于晶胞顶点和中心的分子之间的碳原子间距(3.635 Å)相当)

    Figure  1.  Crystal structure of ethylene in phase Ⅰ (P21/n, $C_{2h}^5 $,Z = 2) at 0.2 GPa and 99 K[40] (This anisotropic compressibility generated by increasing pressure (the cell decreases by 16.7% along the b axis and about 2% along the a and c axis respectively) makes the distances between C atoms of the nearest neighbor molecules located along the a axis (3.527 Å) comparable to those between the molecules sitting on thevertex and at the center of the cell (3.635 Å).)

    图  (a) 氘代丁炔二酸(deuterated ADCA,ADCA-d2)在8 GPa时的晶体结构[61](绿色和紫色箭头分别代表C···C间距和O···D间距);(b) 300 K、9 GPa时ADCA的分子动力学模拟结果[61];(c) 从16 GPa回收的产物的晶体结构[61]

    Figure  2.  (a) Crystal structure of ADCA-d2 at 8 GPa[61] ( The green and purple arrows indicate the C···C and O···D distances respectively); (b) molecular dynamics simulation of ADCA at 300 K and 9 GPa[61]; (c) crystal structure of the product recovered from 16 GPa[61]

    图  一维sp3 C-H纳米线的3种预测结构[72]

    Figure  3.  Three predicted structures of one-dimensional sp3 C-H nanothreads[72]

    图  沿c轴(a)和垂直于c轴(b)的tube (3,0)氮化碳纳米线的结构[80]

    Figure  4.  Structure of tube (3,0) carbon nitride nanothreads viewed along the c-axis (a) and perpendicular to the c-axis (b)[80]

    图  (a)噻吩的光学显微照片[83];(b)噻吩通过[4+2]Diels-Alder反应生成反式-噻吩衍生纳米线的反应机制[83]

    Figure  5.  (a) Optical micrograph of thiofuran[83]; (b) mechanism of formation of anti-thiophene-derived nanothreads by [4+2] Diels-Alder reaction[83]

    图  (a) 哒嗪在0.61 GPa时的局部π堆积结构[88]dc为哒嗪环的质心距离;dp为平行平面之间的距离;Φ为哒嗪环之间的滑移角,由环的法向量和质心向量确定);(b) 哒嗪沿a轴的堆积[88];(c) 哒嗪在0 GPa、500 K下的反应示意图[88]

    Figure  6.  (a) π-stacking structure of pyridazine at 0.61 GPa[88], in which dc is the centroid distance between pyridazine rings, dp is the distance between parallel planes, and Φ is the slippage angle between pyridazine rings, defined by the ring normal and centroid vectors; (b) the stacking of pyridazine along a-axis[88]; (c) diagram of the reaction of pyridazine at 30 GPa and 500 K[88]

    图  (a) s-三嗪在室温高压下的原位X射线衍射[89](D表示降压过程);(b) 在573 K、10.2 GPa下回收产物的X射线衍射图像[89];(c) s-三嗪在12.1 GPa下的晶体结构[89];(d)反应路径中各阶段的焓变(红线和黑线分别表示分步和协同反应过程)[89];(e) s-三嗪的前线分子轨道[89]

    Figure  7.  (a) In situ XRD of s-triazine at high pressure and room temperature[89], in which D represents the decompression process;(b) XRD of the product recovered from 573 K and 10.2 GPa[89]; (c) the crystal structure of s-triazine at 12.1 GPa[89];(d) enthalpy versus step curves of each stage in the reaction path (Red and black lines represent the stepwise and concerted process, respectively)[89]; (e) molecular orbitals of s-triazine[89]

    图  (a) 0.84 GPa时苯胺相Ⅱ的晶体结构沿b轴的投影[91];(b) 密度泛函理论计算优化的一维苯胺衍生纳米线结构[92]

    Figure  8.  (a) Crystal structure of aniline phase Ⅱ at 0.84 GPa projected along the b-axis[91]; (b) structure of one-dimensional aniline-derived nanothreads optimized by DFT[92]

    图  (a) 10.8 GPa时FDCA的晶体结构[93](C1、C2、C3为原子序号);(b) 顺式-FDCA纳米线的晶体结构[93]

    Figure  9.  Crystal structures of (a) FDCA at 10.8 GPa[93], in which C1, C2 and C3 are atom numbers, and (b) syn-FDCA nanothreads[93]

    图  10  C10H8-C10F8共晶在(a) 15.9 GPa、(b)19.9 GPa和(c) 24.0 GPa时的单晶X射线衍射[94]

    Figure  10.  Single crystal XRD of C10H8-C10F8 at (a) 15.9 GPa, (b)19.9 GPa and (c) 24.0 GPa[94]

    图  11  (a) C10H8-C10F8共晶的晶体结构[94];(b) [4+2]环加成聚合路径[94];(c) “2A-tube”聚合路径[94];(d) Friedrich等[95]提出的聚合路径

    Figure  11.  (a) Crystal structure of C10H8-C10F8[94]; (b) the [4+2] cycloaddition polymerization path[94]; (c) “2A-tube” polymerization path[94]; (d) the polymerization path proposed by Friedrich et al.[95]

    图  12  (a) DPB的反应示意图(RT代表室温)[99];(b) DPB在10 GPa下的晶体结构(D1D2D3为原子间距)[99];(c) 相关反应的几何结构(1,4-加成反应中,R1,4′为分子间1位和4′位炔碳原子之间的距离,D为取代基团(−R)之间的距离,$\varphi $为单体分子在堆积方向上的倾斜角)[99] ;(d) GNR-1和GNR-2的结构模型[99]

    Figure  12.  (a) Reaction diagram of DPB, in which RT represents room temperature[99]; (b) crystal structure of DPB at 10 GPa, in which D1D2D3 are the distances between atoms[99]; (c) geometric structures of the relevant reactions ( In 1,4-addition reaction, R1,4′ is the intermolecular distance between 1 and 4′ alkynyl carbon atoms, D is the distance between the substituent groups (−R), and $\varphi $ is the tilt angle of the monomer molecules in the stacking direction.)[99] ; (d) structural models of GNR-1 and GNR-2[99]

    图  13  (a) TEB的反应示意图[100];(b) 3.6 GPa时TEB的晶体结构[100];(c) 3.6 GPa时分子间C···C距离[100];(d) 纳米带模型[100]

    Figure  13.  (a) Reaction diagram of TEB[100]; (b) crystal structure of TEB at 3.6 GPa[100]; (c) intermolecular C···C distance at 3.6 GPa[100]; (d) nanoribbon models[100]

    图  14  (a) 常压室温下偶氮苯的晶体结构[105];(b) 17.1 GPa时A层和B层中偶氮苯分子之间的距离[105](C1、C2′、C3、C4、C5、C6′、N1′、N2′为原子序号);(c) A层偶氮苯通过HDA反应生成CNR-A和B层偶氮苯通过对聚反应生成CNR-B[105];(d) 聚偶氮苯的晶体结构[105]

    Figure  14.  (a) Crystal structure of azobenzene at atmospheric pressure and room temperature[105]; (b) the distance between azobenzene molecules in A and B layers at 17.1 GPa[105], in which C1, C2′, C3, C4, C5, C6′, N1′ and N2′ are atom numbers ; (c) the A-layer azobenzene forms CNR-A by HDA reaction and the B-layer azobenzene forms CNR-B by para-polymerization reaction[105] ; (d) crystal structure of polyazobenzene[105]

    图  15  (a) 通过高分辨气相色谱-质谱联用技术在25 GPa回收的聚偶氮苯中检测到的主要低聚物及其含量[105];(b)同位素标记的低聚物的质谱和相应的分子结构(t代表保留时间)[105];(c) 通过高分辨气相色谱-质谱联用技术在物质的量的比为1∶1的C12H10N2-C12D10N2混合物的聚合产物中检测到H和D共标记的低聚物以及这些化合物与CNR-A/CNR-B的关系[105]

    Figure  15.  (a) The main oligomers and their contents detected by HRGC-MS in polyazobenzene recovered from 25 GPa[105]; (b) mass spectrum and corresponding molecular structures of isotopically labeled oligomers (t represents retention time)[105]; (c) H and Dcolabeled oligomers detected by HRGC-MS in the polymerization products of mixture of C12H10N2-C12D10N2with a molar ratio of 1∶1 and the relationship between these compounds and CNR-A/CNR-B[105]

    图  16  (a) 5.7 GPa下乙炔的晶体结构[109];(b) 10 GPa时顺式聚乙炔聚合成石墨烷的分子动力学模拟(PA代表顺式聚乙炔,PA后的数字代表计算的代数,10 GPa-PA-1代表10 GPa时计算得到的顺式聚乙炔结构)[109];(c) 样品P2的固态核磁共振[109];(d) 氘代样品P2的中子对分布函数的实验数据和动力学模拟的结构模型的对分布函数计算结果[109]

    Figure  16.  (a) Crystal structure of ethyne at 5.7 GPa[109]; (b) meta-dynamic simulation of the polymerization of cis-polyacetylene into graphane at 10 GPa (PA represents cis-PA, and the numbers following PA are the generation numbers. 10 GPa-PA-1 is the structure of cis-polyacetylene calculated at 10 GPa.)[109]; (c) solid-state NMR of sample P2[109]; (d) the neutron pair distribution function (PDF) experiment data of deuterated sample P2 and the calculated PDF of selected structural models of the dynamic simulations[109]

    图  17  (a) 20 GPa时C6D6-C6F6共晶的晶体结构[111];(b) 从C6D6-C6F6共晶到H-F取代石墨烷的反应路线[111]

    Figure  17.  (a) Crystal structure of C6D6-C6F6 at 20 GPa[111]; (b) reaction route from C6D6-C6F6 to H-F-substituted graphane[111]

    图  18  (a) 原料CaC2以及通过巴黎-爱丁堡压机在26 GPa下合成的聚合产物的水解产物总离子色谱[118];(b) 30 GPa时分子动力学模拟的CaC2结构[118]

    Figure  18.  (a) Total ion chromatography of the raw material CaC2 and the hydrolysis products of polymerization product synthesized by the Paris-Edinburgh cell at 26 GPa[118]; (b) structure of CaC2 simulated by meta-dynamics at 30 GPa[118]

    图  19  (a) 高压下Li2C2的相变及反应过程[119];(b) Li2C2在高压下的理论和实验红外光谱[119];(c) 水解产物中各种碳氢化合物的相对含量以及化学计量比[119]

    Figure  19.  (a) Phase transition and reaction process of Li2C2 under high pressure[119]; (b) theoretical and experimental infrared spectra of Li2C2 under high pressure[119]; (c) relative content and stoichiometry of hydrocarbons in the hydrolysis product[119]

    图  20  (a) 准谐波近似(quasi-harmonic approximation ,QHA)理论计算得到的Li-C相图[122]nLi/(nLi+nC)表示Li在Li-C化合物中的比例);Li2C2在(b) 27.5GPa和(c) 36.5 GPa下的高温原位X射线粉末衍射谱[122];(d) 27.5 GPa、1696 K时LiC2和(e) 36.5 GPa、2010 K时Li3C4的Rietveld精修结果[122]

    Figure  20.  (a) Phase diagrams of Li-C calculated by quasi-harmonic approximation (QHA)[122], in which nLi/(nLi+nC) represents the proportion of Li in Li-C compound; in situ high temperature X-ray powder diffraction pattern of Li2C2 at (b) 27.5 GPa and(c) 36.5 GPa[122]; rietveld refinement results of (d) LiC2 at 27.5 GPa, 1696 K and (e) Li3C4 at 36.5 GPa, 2010 K[122]

    图  21  (a) NaC2H的高压反应示意图[123];(b) 临界压力下NaC2H的晶体结构(d1d2d3为原子间距[123]);(c)空气、NaC2H以及20 GPa下回收样品的水解产物的总离子色谱、各组分的百分比以及与NIST谱的对比[123]m/z代表质荷比);(d) 二聚及后续H转移过程的反应路线[123]

    Figure  21.  (a) Diagram of high-pressure reaction of NaC2H[123]; (b) the crystal structure of NaC2H under critical pressure[123], in which d1, d2, d3 are the distances between atoms; (c) total ion chromatography, percentages of each component and comparison with NIST spectrometry of air, raw materials and hydrolysates of samples recovered from 20 GPa[123], in which m/z represents mass-to-charge ratio; (d) reaction route of dimerization and subsequent H-transfer process[123]

    图  22  (a) 高压下 K3Fe(CN)6的晶格参数[131]; (b) 1.7 GPa(左)和4.4 GPa(右)时K3Fe(CN)6的晶体结构和${\mathrm{Fe(CN)}} _6^{3-} $的局部结构[133];(c) 高压下K3Fe(CN)6的相变和化学反应过程[133]

    Figure  22.  (a) Lattice parameters of K3Fe(CN)6 under high pressure[131]; (b) the crystal structure of K3Fe(CN)6 and local structure of ${\mathrm{Fe(CN)}} _6^{3-} $ at 1.7 GPa (left) and 4.4 GPa (right)[133]; (c) phase transition and chemical reaction process of K3Fe(CN)6 under high pressure[133]

    图  23  Li3Fe(CN)6的晶体结构(棕色的八面体代表${\mathrm{Fe(CN)}} _6^{3-}$,紫色的原子代表Li+[134]

    Figure  23.  Crystal structure of Li3Fe(CN)6, in which the brown octahedron stands for ${\mathrm{Fe(CN)}} _6^{3-} $ and the purple atom stands for Li+[134]

    图  24  (a) 20.6 GPa时CD3CN的晶体结构模型以及可能的氢转移路线[141](C1、C2、D1、D2为原子序号);(b) 通过分子动力学计算得到的35 GPa时乙腈的反应过程[141];(c) 乙腈在高压下的相变及聚合的示意图[141]

    Figure  24.  (a) The crystal structure model of CD3CN at 20.6 GPa and possible H-transfer routes[141], in which C1, C2, D1, D2 are atom numbers; (b) the possible reaction process of acetonitrile at 35 GPa calculated by meta-dynamics[141]; (c) diagram of phase transition and polymerization of acetonitrile under high pressure[141]

    图  25  (a) 2-丁炔在高压下的氢转移过程(d1为原子间距)[142];(b)密度泛函理论计算优化后的12.2 GPa时2-丁炔的晶体结构[142];(c) 化学键和弱相互作用的相互作用区域指示函数(interaction region indication,IRI)研究[142],IRI为1.1;(d) NEB计算中2-丁炔沿d1的氢转移过程[142](C1、C1′、C2、C2′、H、H′为原子序号,NICS(1)_ZZ表示在6元环过渡态质心上方1 Å处环平面法向上的NICS投影)

    Figure  25.  (a) Hydrogen transfer diagram of 2-butylene[142], in which d1 is the distance between atoms; (b) the crystal structure of2-butylene at 12.2 GPa after DFT optimization[142]; (c) interaction region indication (IRI) study of chemical bonds and weak interactions[142], IRI equivalent is 1.1; (d) hydrogen transfer process of 2-butylene along d1 in NEB calculation[142] ( C1, C1′, C2, C2′, H and H′ are atom numbers. NICS(1)_ZZ represents NICS projection on the normal vector of the ring plane of the atom at 1 Å above mass center of the 6-member ring intermediate state.)

    表  1  不同反应体系中压力诱导聚合的分子间阈值距离

    Table  1.   Intermolecular threshold distances for pressure induced polymerization of different molecules

    Molecules d(C∙∙∙C)min Reaction pressure/GPa Functional group
    Acetylene[109] 3.1 5.7 Alkynyl
    Acetylenedicarboxylic acid[61] 3.1 8 Alkynyl
    Monosodium acetylide[123] 2.9 14 Alkynyl
    Calcium acetylide[118] 2.9 20 Alkynyl
    Benzene[37] 2.8 18 Phenyl
    Benzene-hexafluorobenzene cocrystal[111] 2.8 20 Phenyl
    2,5-furandicarboxylic acid[93] 2.8 11 Furan
    Azobenzene-layer B[105] 3.18 18 Phenyl
    Azobenzene-layer A[105] 3.0 18 Azo, phenyl
    1,4-diphenylbutadiyne[99] 3.2 10 Alkynyl, phenyl
    1,3,5-triethynylbenzene[100] 3.4 4 Alkynyl, phenyl
    下载: 导出CSV
  • [1] HAN M Y, ÖZYILMAZ B, ZHANG Y B, et al. Energy band-gap engineering of graphene nanoribbons [J]. Physical Review Letters, 2007, 98(20): 206805. doi: 10.1103/PhysRevLett.98.206805
    [2] TAPASZTÓ L, DOBRIK G, LAMBIN P, et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography [J]. Nature Nanotechnology, 2008, 3(7): 397–401. doi: 10.1038/nnano.2008.149
    [3] KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKII A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature, 2009, 458(7240): 872–876. doi: 10.1038/nature07872
    [4] JIAO L Y, ZHANG L, WANG X R, et al. Narrow graphene nanoribbons from carbon nanotubes [J]. Nature, 2009, 458(7240): 877–880. doi: 10.1038/nature07919
    [5] NARITA A, FENG X L, MÜLLEN K. Bottom-up synthesis of chemically precise graphene nanoribbons [J]. The Chemical Record, 2015, 15(1): 295–309. doi: 10.1002/tcr.201402082
    [6] YANG X Y, DOU X, ROUHANIPOUR A, et al. Two-dimensional graphene nanoribbons [J]. Journal of the American Chemical Society, 2008, 130(13): 4216–4217. doi: 10.1021/ja710234t
    [7] SCHWAB M G, NARITA A, HERNANDEZ Y, et al. Structurally defined graphene nanoribbons with high lateral extension [J]. Journal of the American Chemical Society, 2012, 134(44): 18169–18172. doi: 10.1021/ja307697j
    [8] WU J S, GHERGHEL L, WATSON M D, et al. From branched polyphenylenes to graphite ribbons [J]. Macromolecules, 2003, 36(19): 7082–7089. doi: 10.1021/ma0257752
    [9] YANO Y, MITOMA N, ITO H, et al. A quest for structurally uniform graphene nanoribbons: synthesis, properties, and applications [J]. The Journal of Organic Chemistry, 2020, 85(1): 4–33. doi: 10.1021/acs.joc.9b02814
    [10] BUNDY F, HALL H T, STRONG H M, et al. Man-made diamonds [J]. Nature, 1955, 176(4471): 51–55. doi: 10.1038/176051a0
    [11] BUNDY F P. Direct conversion of graphite to diamond in static pressure apparatus [J]. Science, 1962, 137(3535): 1057–1058. doi: 10.1126/science.137.3535.1057
    [12] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6923): 599–600. doi: 10.1038/421599b
    [13] BUNDY F P, KASPER J S. Hexagonal diamond-a new form of carbon [J]. The Journal of Chemical Physics, 1967, 46(9): 3437–3446. doi: 10.1063/1.1841236
    [14] HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381
    [15] LUO K, LIU B, HU W T, et al. Coherent interfaces govern direct transformation from graphite to diamond [J]. Nature, 2022, 607(7919): 486–491. doi: 10.1038/s41586-022-04863-2
    [16] UTSUMI W, YAGI T. Light-transparent phase formed by room-temperature compression of graphite [J]. Science, 1991, 252(5012): 1542–1544. doi: 10.1126/science.252.5012.1542
    [17] DONG J J, YAO Z, YAO M G, et al. Decompression-induced diamond formation from graphite sheared under pressure [J]. Physical Review Letters, 2020, 124(6): 065701. doi: 10.1103/PhysRevLett.124.065701
    [18] YAGI T, UTSUMI W, YAMAKATA M A, et al. High-pressure in situ X-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature [J]. Physical Review B, 1992, 46(10): 6031–6039. doi: 10.1103/PhysRevB.46.6031
    [19] TAKANO K J, HARASHIMA H H H, WAKATSUKI M W M. New high-pressure phases of carbon [J]. Japanese Journal of Applied Physics, 1991, 30(5A): L860–L863. doi: 10.1143/JJAP.30.L860
    [20] HANFLAND M, BEISTER H, SYASSEN K. Graphite under pressure: equation of state and first-order Raman modes [J]. Physical Review B, 1989, 39(17): 12598–12603. doi: 10.1103/PhysRevB.39.12598
    [21] LI Q, MA Y M, OGANOV A R, et al. Superhard monoclinic polymorph of carbon [J]. Physical Review Letters, 2009, 102(17): 175506. doi: 10.1103/PhysRevLett.102.175506
    [22] UMEMOTO K, WENTZCOVITCH R M, SAITO S, et al. Body-centered tetragonal C4: a viable sp3 carbon allotrope [J]. Physical Review Letters, 2010, 104(12): 125504. doi: 10.1103/PhysRevLett.104.125504
    [23] WANG J T, CHEN C F, KAWAZOE Y. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon [J]. Physical Review Letters, 2011, 106(7): 075501. doi: 10.1103/PhysRevLett.106.075501
    [24] SHANG Y C, LIU Z D, DONG J J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene [J]. Nature, 2021, 599(7886): 599–604. doi: 10.1038/s41586-021-03882-9
    [25] TANG H, YUAN X H, CHENG Y, et al. Synthesis of paracrystalline diamond [J]. Nature, 2021, 599(7886): 605–610. doi: 10.1038/s41586-021-04122-w
    [26] 王萱, 李阔, 郑海燕, 等. 分子体系的高压化学反应 [J]. 化学通报, 2019, 82(5): 387–398. doi: 10.14159/j.cnki.0441-3776.2019.05.001

    WANG X, LI K, ZHENG H Y, et al. Chemical reactions of molecules under high pressure [J]. Chemistry, 2019, 82(5): 387–398. doi: 10.14159/j.cnki.0441-3776.2019.05.001
    [27] BLOCK S, WEIR C E, PIERMARINI G J. Polymorphism in benzene, naphthalene, and anthracene at high pressure [J]. Science, 1970, 169(3945): 586–587. doi: 10.1126/science.169.3945.586
    [28] AKELLA J, KENNEDY G C. Phase diagram of benzene to 35 kbar [J]. The Journal of Chemical Physics, 1971, 55(2): 793–796. doi: 10.1063/1.1676145
    [29] THIÉRY M M, LÉGER J M. High pressure solid phases of benzene. Ⅰ. Raman and X-ray studies of C6H6 at 294 K up to 25 GPa [J]. The Journal of Chemical Physics, 1988, 89(7): 4255–4271. doi: 10.1063/1.454809
    [30] CANSELL F, FABRE D, PETITET J P. Phase transitions and chemical transformations of benzene up to 550 ℃ and 30 GPa [J]. The Journal of Chemical Physics, 1993, 99(10): 7300–7304. doi: 10.1063/1.465711
    [31] CIABINI L, SANTORO M, BINI R, et al. High pressure crystal phases of benzene probed by infrared spectroscopy [J]. The Journal of Chemical Physics, 2001, 115(8): 3742–3749. doi: 10.1063/1.1388543
    [32] CIABINI L, GORELLI F A, SANTORO M, et al. High-pressure and high-temperature equation of state and phase diagram of solid benzene [J]. Physical Review B, 2005, 72(9): 094108. doi: 10.1103/PhysRevB.72.094108
    [33] PRUZAN P, CHERVIN J C, THIÉRY M M, et al. Transformation of benzene to a polymer after static pressurization to 30 GPa [J]. The Journal of Chemical Physics, 1990, 92(11): 6910–6915. doi: 10.1063/1.458278
    [34] CIABINI L, SANTORO M, BINI R, et al. High pressure reactivity of solid benzene probed by infrared spectroscopy [J]. The Journal of Chemical Physics, 2002, 116(7): 2928–2935. doi: 10.1063/1.1435570
    [35] JACKSON B R, TROUT C C, BADDING J V. UV Raman analysis of the C: H network formed by compression of benzene [J]. Chemistry of Materials, 2003, 15(9): 1820–1824. doi: 10.1021/cm021009y
    [36] CIABINI L, SANTORO M, BINI R, et al. High pressure photoinduced ring opening of benzene [J]. Physical Review Letters, 2002, 88(8): 085505. doi: 10.1103/PhysRevLett.88.085505
    [37] FITZGIBBONS T C, GUTHRIE M, XU E S, et al. Benzene-derived carbon nanothreads [J]. Nature Materials, 2015, 14(1): 43–47. doi: 10.1038/nmat4088
    [38] YANG X, WANG X, WANG Y D, et al. From molecules to carbon materials: high pressure induced polymerization and bonding mechanisms of unsaturated compounds [J]. Crystals, 2019, 9(10): 490. doi: 10.3390/cryst9100490
    [39] WIELDRAAIJER H, SCHOUTEN J A, TRAPPENIERS N J. Investigation of the phase diagrams of ethane, ethylene, and methane at high pressures [J]. High Temperatures High Pressures, 1983, 15(1): 87–92.
    [40] CHELAZZI D, CEPPATELLI M, SANTORO M, et al. Pressure-induced polymerization in solid ethylene [J]. The Journal of Physical Chemistry B, 2005, 109(46): 21658–21663. doi: 10.1021/jp0536495
    [41] CHELAZZI D, CEPPATELLI M, SANTORO M, et al. High-pressure synthesis of crystalline polyethylene using optical catalysis [J]. Nature Materials, 2004, 3(7): 470–475. doi: 10.1038/nmat1147
    [42] BENSON S W. Mechanism of the Diels-Alder reactions of butadiene [J]. The Journal of Chemical Physics, 1967, 46(12): 4920–4926. doi: 10.1063/1.1840657
    [43] MILLER G H. Thermal polymerization of butadiene to solid polymer [J]. Journal of Polymer Science, 1960, 43(142): 517–525. doi: 10.1002/pol.1960.1204314221
    [44] CITRONI M, CEPPATELLI M, BINI R, et al. The high-pressure chemistry of butadiene crystal [J]. The Journal of Chemical Physics, 2003, 118(4): 1815–1820. doi: 10.1063/1.1530163
    [45] CITRONI M, CEPPATELLI M, BINI R, et al. Laser-induced selectivity for dimerization versus polymerization of butadiene under pressure [J]. Science, 2002, 295(5562): 2058–2060. doi: 10.1126/science.1068451
    [46] WIBERG K B, HADAD C M, ELLISON G B, et al. Butadiene. 3. Charge distribution in electronically excited states [J]. The Journal of Physical Chemistry, 1993, 97(51): 13586–13597. doi: 10.1021/j100153a028
    [47] DOERING J P, MCDIARMID R. Electron impact study of the energy levels of trans-1,3-butadiene: Ⅱ. detailed analysis of valence and Rydberg transitions [J]. The Journal of Chemical Physics, 1980, 73(8): 3617–3624. doi: 10.1063/1.440587
    [48] CHADWICK R R, ZGIERSKI M Z, HUDSON B S. Resonance Raman scattering of butadiene: vibronic activity of a bu mode demonstrates the presence of a 1 Ag symmetry excited electronic state at low energy [J]. The Journal of Chemical Physics, 1991, 95(10): 7204–7211. doi: 10.1063/1.461397
    [49] AOYAGI M, OSAMURA Y, IWATA S. An MCSCF study of the low-lying states of trans-butadiene [J]. The Journal of Chemical Physics, 1985, 83(3): 1140–1148. doi: 10.1063/1.449477
    [50] AOYAGI M, OSAMURA Y. A theoretical study of the potential energy surface of butadiene in the excited states [J]. Journal of the American Chemical Society, 1989, 111(2): 470–474. doi: 10.1021/ja00184a010
    [51] CHIANG C K, GAU S C, FINCHER JR C R, et al. Polyacetylene, (CH) x : n-type and p-type doping and compensation [J]. Applied Physics Letters, 1978, 33(1): 18–20. doi: 10.1063/1.90166
    [52] MACDIARMID A G, HEEGER A J. Organic metals and semiconductors: the chemistry of polyacetylene, (CH) x , and its derivatives [J]. Synthetic Metals, 1980, 1(2): 101–118. doi: 10.1016/0379-6779(80)90002-8
    [53] WARD M D, HUANG H T, ZHU L, et al. High-pressure behavior of C2I2 and polymerization to a conductive polymer [J]. The Journal of Physical Chemistry C, 2019, 123(18): 11369–11377. doi: 10.1021/acs.jpcc.8b12161
    [54] MASUDA T. Substituted polyacetylenes: synthesis, properties, and functions [J]. Polymer Reviews, 2017, 57(1): 1–14. doi: 10.1080/15583724.2016.1170701
    [55] SAITO M A, MAEDA K, ONOUCHI H, et al. Synthesis and macromolecular helicity induction of a stereoregular polyacetylene bearing a carboxy group with natural amino acids in water [J]. Macromolecules, 2000, 33(13): 4616–4618. doi: 10.1021/ma000484j
    [56] MAEDA K, GOTO H, YASHIMA E. Stereospecific polymerization of propiolic acid with rhodium complexes in the presence of bases and helix induction on the polymer in water [J]. Macromolecules, 2001, 34(5): 1160–1164. doi: 10.1021/ma001651i
    [57] LAM J W Y, LUO J D, DONG Y P, et al. Functional polyacetylenes: synthesis, thermal stability, liquid crystallinity, and light emission of polypropiolates [J]. Macromolecules, 2002, 35(22): 8288–8299. doi: 10.1021/ma021011a
    [58] KISHIMOTO Y, ECKERLE P, MIYATAKE T, et al. Well-controlled polymerization of phenylacetylenes with organorhodium (Ⅰ) complexes: mechanism and structure of the polyenes [J]. Journal of the American Chemical Society, 1999, 121(51): 12035–12044. doi: 10.1021/ja991903z
    [59] MASUDA T, KAWAI M, HIGASHIMURA T. Polymerization of propiolic acid and its derivatives catalysed by MoCl5 [J]. Polymer, 1982, 23(5): 744–747. doi: 10.1016/0032-3861(82)90062-3
    [60] USANMAZ A, ALTÜRK E. Radiation induced solid-state polymerization of acetylenedicarboxylic acid [J]. Journal of Macromolecular Science, Part A, 2002, 39(5): 379–395. doi: 10.1081/MA-120003958
    [61] WANG X, TANG X Y, ZHANG P J, et al. Crystalline fully carboxylated polyacetylene obtained under high pressure as a Li-ion battery anode material [J]. The Journal of Physical Chemistry Letters, 2021, 12(50): 12055–12061. doi: 10.1021/acs.jpclett.1c03734
    [62] STOJKOVIC D, ZHANG P H, CRESPI V H. Smallest nanotube: breaking the symmetry of sp3 bonds in tubular geometries [J]. [J]. Physical Review Letters, 2001, 87(12): 125502. doi: 10.1103/PhysRevLett.87.125502
    [63] WEN X D, HOFFMANN R, ASHCROFT N W. Benzene under high pressure: a story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase [J]. Journal of the American Chemical Society, 2011, 133(23): 9023–9035. doi: 10.1021/ja201786y
    [64] OLBRICH M, MAYER P, TRAUNER D. A step toward polytwistane: synthesis and characterization of C2-symmetric tritwistane [J]. Organic & Biomolecular Chemistry, 2014, 12(1): 108–112. doi: 10.1039/C3OB42152J
    [65] BARUA S R, QUANZ H, OLBRICH M, et al. Polytwistane [J]. Chemistry–A European Journal, 2014, 20(6): 1638–1645. doi: 10.1002/chem.201303081
    [66] LI X, BALDINI M, WANG T, et al. Mechanochemical synthesis of carbon nanothread single crystals [J]. Journal of the American Chemical Society, 2017, 139(45): 16343–16349. doi: 10.1021/jacs.7b09311
    [67] MARYASIN B, OLBRICH M, TRAUNER D, et al. Calculated nuclear magnetic resonance spectra of polytwistane and related hydrocarbon nanorods [J]. Journal of Chemical Theory and Computation, 2015, 11(3): 1020–1026. doi: 10.1021/ct5011505
    [68] DUAN P, LI X, WANG T, et al. The chemical structure of carbon nanothreads analyzed by advanced solid-state NMR [J]. Journal of the American Chemical Society, 2018, 140(24): 7658–7666. doi: 10.1021/jacs.8b03733
    [69] WANG T, DUAN P, XU E S, et al. Constraining carbon nanothread structures by experimental and calculated nuclear magnetic resonance spectra [J]. Nano Letters, 2018, 18(8): 4934–4942. doi: 10.1021/acs.nanolett.8b01736
    [70] JUHL S J, WANG T, VERMILYEA B, et al. Local structure and bonding of carbon nanothreads probed by high-resolution transmission electron microscopy [J]. Journal of the American Chemical Society, 2019, 141(17): 6937–6945. doi: 10.1021/jacs.8b13405
    [71] XU E S, LAMMERT P E, CRESPI V H. Systematic enumeration of sp3 nanothreads [J]. Nano Letters, 2015, 15(8): 5124–5130. doi: 10.1021/acs.nanolett.5b01343
    [72] CHEN B, HOFFMANN R, ASHCROFT N W, et al. Linearly polymerized benzene arrays as intermediates, tracing pathways to carbon nanothreads [J]. Journal of the American Chemical Society, 2015, 137(45): 14373–14386. doi: 10.1021/jacs.5b09053
    [73] ROMAN R E, KWAN K, CRANFORD S W. Mechanical properties and defect sensitivity of diamond nanothreads [J]. Nano Letters, 2015, 15(3): 1585–1590. doi: 10.1021/nl5041012
    [74] SILVEIRA J F R V, MUNIZ A R. First-principles calculation of the mechanical properties of diamond nanothreads [J]. Carbon, 2017, 113: 260–265. doi: 10.1016/j.carbon.2016.11.060
    [75] CHEN M M, XIAO J, CAO C, et al. Theoretical prediction electronic properties of Group-Ⅳ diamond nanothreads [J]. AIP Advances, 2018, 8(7): 075107. doi: 10.1063/1.5040374
    [76] DEMINGOS P G, MUNIZ A R. Electronic and mechanical properties of partially saturated carbon and carbon nitride nanothreads [J]. The Journal of Physical Chemistry C, 2019, 123(6): 3886–3891. doi: 10.1021/acs.jpcc.8b11329
    [77] SILVEIRA J F R V, MUNIZ A R. Functionalized diamond nanothreads from benzene derivatives [J]. Physical Chemistry Chemical Physics, 2017, 19(10): 7132–7137. doi: 10.1039/C6CP08655A
    [78] ZHURAVLEV K K, TRAIKOV K, DONG Z H, et al. Raman and infrared spectroscopy of pyridine under high pressure [J]. Physical Review B, 2010, 82(6): 064116. doi: 10.1103/PhysRevB.82.064116
    [79] YASUZUKA T, KOMATSU K, KAGI H. A revisit to high-pressure transitions of pyridine: a new phase transition at 5 GPa and formation of a crystalline phase over 20 GPa [J]. Chemistry Letters, 2011, 40(7): 733–735. doi: 10.1246/cl.2011.733
    [80] LI X, WANG T, DUAN P, et al. Carbon nitride nanothread crystals derived from pyridine [J]. Journal of the American Chemical Society, 2018, 140(15): 4969–4972. doi: 10.1021/jacs.7b13247
    [81] DAMAY F, RODRÍGUEZ-CARVAJAL J, ANDRÉ D, et al. Orientational ordering in the low-temperature stable phases of deuterated thiophene [J]. Acta Crystallographica Section B: Structural Science, 2008, 64(5): 589–595. doi: 10.1107/S0108768108015103
    [82] DUNSTETTER F, ANDRÉ D, GONTHIER-VASSAL A, et al. Observation of an incommensurate phase in the stable phase sequence of deuterated thiophene by powder neutron diffraction [J]. Chemical Physics, 1993, 175(2/3): 475–482. doi: 10.1016/0301-0104(93)85174-7
    [83] BISWAS A, WARD M D, WANG T, et al. Evidence for orientational order in nanothreads derived from thiophene [J]. The Journal of Physical Chemistry Letters, 2019, 10(22): 7164–7171. doi: 10.1021/acs.jpclett.9b02546
    [84] CEPPATELLI M, SANTORO M, BINI R, et al. High pressure reactivity of solid furan probed by infrared and Raman spectroscopy [J]. The Journal of Chemical Physics, 2003, 118(3): 1499–1506. doi: 10.1063/1.1527895
    [85] SANTORO M, CEPPATELLI M, BINI R, et al. High-pressure photochemistry of furane crystal [J]. The Journal of Chemical Physics, 2003, 118(18): 8321–8325. doi: 10.1063/1.1565997
    [86] HUSS S, WU S K, CHEN B, et al. Scalable synthesis of crystalline one-dimensional carbon nanothreads through modest-pressure polymerization of furan [J]. ACS Nano, 2021, 15(3): 4134–4143. doi: 10.1021/acsnano.0c10400
    [87] MATSUURA B S, HUSS S, ZHENG Z X, et al. Perfect and defective 13C-furan-derived nanothreads from modest-pressure synthesis analyzed by 13C NMR [J]. Journal of the American Chemical Society, 2021, 143(25): 9529–9542. doi: 10.1021/jacs.1c03671
    [88] DUNNING S G, ZHU L, CHEN B, et al. Solid-state pathway control via reaction-directing heteroatoms: ordered pyridazine nanothreads through selective cycloaddition [J]. Journal of the American Chemical Society, 2022, 144(5): 2073–2078. doi: 10.1021/jacs.1c12143
    [89] GAO D X, TANG X Y, XU J Q, et al. Crystalline C3N3H3 tube (3, 0) nanothreads [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(17): e2201165119. doi: 10.1073/pnas.2201165119
    [90] WHEATLEY P J. The crystal and molecular structure of s-triazine [J]. Acta Crystallographica, 1955, 8(4): 224–226. doi: 10.1107/S0365110X55000741
    [91] NOBREGA M M, TEMPERINI M L A, BINI R. Probing the chemical stability of aniline under high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(13): 7495–7501. doi: 10.1021/acs.jpcc.6b12924
    [92] NOBREGA M M, TEIXEIRA-NETO E, CAIRNS A B, et al. One-dimensional diamondoid polyaniline-like nanothreads from compressed crystal aniline [J]. Chemical Science, 2018, 9(1): 254–260. doi: 10.1039/C7SC03445H
    [93] WANG X, YANG X, WANG Y D, et al. From biomass to functional crystalline diamond nanothread: pressure-induced polymerization of 2,5-furandicarboxylic acid [J]. Journal of the American Chemical Society, 2022, 144(48): 21837–21842. doi: 10.1021/jacs.2c08914
    [94] WARD M D, TANG W S, ZHU L, et al. Controlled single-crystalline polymerization of C10H8·C10F8 under pressure [J]. Macromolecules, 2019, 52(20): 7557–7563. doi: 10.1021/acs.macromol.9b01416
    [95] FRIEDRICH A, COLLINGS I E, DZIUBEK K F, et al. Pressure-induced polymerization of polycyclic arene-perfluoroarene cocrystals: single crystal X-ray diffraction studies, reaction kinetics, and design of columnar hydrofluorocarbons [J]. Journal of the American Chemical Society, 2020, 142(44): 18907–18923. doi: 10.1021/jacs.0c09021
    [96] JORDAN R S, WANG Y, MCCURDY R D, et al. Synthesis of graphene nanoribbons via the topochemical polymerization and subsequent aromatization of a diacetylene precursor [J]. Chem, 2016, 1(1): 78–90. doi: 10.1016/j.chempr.2016.06.010
    [97] JORDAN R S, LI Y L, LIN C W, et al. Synthesis of N= 8 armchair graphene nanoribbons from four distinct polydiacetylenes [J]. Journal of the American Chemical Society, 2017, 139(44): 15878–15890. doi: 10.1021/jacs.7b08800
    [98] LI Y L, ZEE C T, LIN J B, et al. Fjord-edge graphene nanoribbons with site-specific nitrogen substitution [J]. Journal of the American Chemical Society, 2020, 142(42): 18093–18102. doi: 10.1021/jacs.0c07657
    [99] ZHANG P J, TANG X Y, WANG Y D, et al. Distance-selected topochemical dehydro-Diels-Alder reaction of 1,4-diphenylbutadiyne toward crystalline graphitic nanoribbons [J]. Journal of the American Chemical Society, 2020, 142(41): 17662–17669. doi: 10.1021/jacs.0c08274
    [100] LI Y P, TANG X Y, ZHANG P J, et al. Scalable high-pressure synthesis of sp2–sp3 carbon nanoribbon via [4+2] polymerization of 1,3,5-triethynylbenzene [J]. The Journal of Physical Chemistry Letters, 2021, 12(30): 7140–7145. doi: 10.1021/acs.jpclett.1c01945
    [101] SANTORO M, CIABINI L, BINI R, et al. High-pressure polymerization of phenylacetylene and of the benzene and acetylene moieties [J]. Journal of Raman Spectroscopy, 2003, 34(7/8): 557–566. doi: 10.1002/jrs.1024
    [102] TANG W S, STROBEL T A. Evidence for functionalized carbon nanothreads from π-stacked, para-disubstituted benzenes [J]. The Journal of Physical Chemistry C, 2020, 124(45): 25062–25070. doi: 10.1021/acs.jpcc.0c06715
    [103] BROWN C J. A refinement of the crystal structure of azobenzene [J]. Acta Crystallographica, 1966, 21(1): 146–152. doi: 10.1107/S0365110X66002445
    [104] ROMI S, FANETTI S, ALABARSE F, et al. Synthesis of double core chromophore-functionalized nanothreads by compressing azobenzene in a diamond anvil cell [J]. Chemical Science, 2021, 12(20): 7048–7057. doi: 10.1039/D0SC06968J
    [105] ZHANG P J, GAO D X, TANG X Y, et al. Ordered van der Waals hetero-nanoribbon from pressure-induced topochemical polymerization of azobenzene [J]. Journal of the American Chemical Society, 2023, 145(12): 6845–6852. doi: 10.1021/jacs.2c13753
    [106] SAKASHITA M, YAMAWAKI H, AOKI K. FT-IR study of the solid state polymerization of acetylene under pressure [J]. The Journal of Physical Chemistry, 1996, 100(23): 9943–9947. doi: 10.1021/jp960306l
    [107] CEPPATELLI M, SANTORO M, BINI R, et al. Fourier transform infrared study of the pressure and laser induced polymerization of solid acetylene [J]. The Journal of Chemical Physics, 2000, 113(14): 5991–6000. doi: 10.1063/1.1288800
    [108] TROUT C C, BADDING J V. Solid state polymerization of acetylene at high pressure and low temperature [J]. The Journal of Physical Chemistry A, 2000, 104(34): 8142–8145. doi: 10.1021/jp000198+
    [109] SUN J M, DONG X, WANG Y J, et al. Pressure-induced polymerization of acetylene: structure-directed stereoselectivity and a possible route to graphane [J]. Angewandte Chemie, 2017, 129(23): 6653–6657. doi: 10.1002/ange.201702685
    [110] WANG Y J, WANG L J, ZHENG H Y, et al. Phase transitions and polymerization of C6H6−C6F6 cocrystal under extreme conditions [J]. The Journal of Physical Chemistry C, 2016, 120(51): 29510–29519. doi: 10.1021/acs.jpcc.6b11245
    [111] WANG Y J, DONG X, TANG X Y, et al. Pressure-induced Diels-Alder reactions in C6H6−C6F6 cocrystal towards graphane structure [J]. Angewandte Chemie International Edition, 2019, 58(5): 1468–1473. doi: 10.1002/anie.201813120
    [112] EFTHIMIOPOULOS I, KUNC K, VAZHENIN G V, et al. Structural transformation and vibrational properties of BaC2 at high pressure [J]. Physical Review B, 2012, 85(5): 054105. doi: 10.1103/PhysRevB.85.054105
    [113] SREPUSHARAWOOT P, BLOMQVIST A, ARAÚJO C M, et al. One-dimensional polymeric carbon structure based on five-membered rings in alkaline earth metal dicarbides BeC2 and MgC2 [J]. Physical Review B, 2010, 82(12): 125439. doi: 10.1103/PhysRevB.82.125439
    [114] CHEN X Q, FU C L, FRANCHINI C. Polymeric forms of carbon in dense lithium carbide [J]. Journal of Physics: Condensed Matter, 2010, 22(29): 292201. doi: 10.1088/0953-8984/22/29/292201
    [115] LI Y L, LUO W, ZENG Z, et al. Pressure-induced superconductivity in CaC2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(23): 9289–9294. doi: 10.1073/pnas.1307384110
    [116] KULKARNI A, DOLL K, SCHÖN J C, et al. Global exploration of the enthalpy landscape of calcium carbide [J]. The Journal of Physical Chemistry B, 2010, 114(47): 15573–15581. doi: 10.1021/jp1028504
    [117] BENSON D, LI Y L, LUO W, et al. Lithium and calcium carbides with polymeric carbon structures [J]. Inorganic Chemistry, 2013, 52(11): 6402–6406. doi: 10.1021/ic4002219
    [118] ZHENG H Y, WANG L J, LI K, et al. Pressure induced polymerization of acetylide anions in CaC2 and 107 fold enhancement of electrical conductivity [J]. Chemical Science, 2017, 8(1): 298–304. doi: 10.1039/C6SC02830F
    [119] WANG L J, DONG X, WANG Y J, et al. Pressure-induced polymerization and disproportionation of Li2C2 accompanied with irreversible conductivity enhancement [J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 4241–4245. doi: 10.1021/acs.jpclett.7b01779
    [120] EFTHIMIOPOULOS I, BENSON D E, KONAR S, et al. Structural transformations of Li2C2 at high pressures [J]. Physical Review B, 2015, 92(6): 064111. doi: 10.1103/PhysRevB.92.064111
    [121] LIN Y Z, STROBEL T A, COHEN R E. Structural diversity in lithium carbides [J]. Physical Review B, 2015, 92(21): 214106. doi: 10.1103/PhysRevB.92.214106
    [122] DONG X, WANG L J, LI K, et al. Tailored synthesis of the narrowest zigzag graphene nanoribbon structure by compressing the lithium acetylide under high temperature [J]. The Journal of Physical Chemistry C, 2018, 122(35): 20506–20512. doi: 10.1021/acs.jpcc.8b04081
    [123] HAN J, TANG X Y, WANG Y D, et al. Pressure-induced polymerization of monosodium acetylide: a radical reaction initiated topochemically [J]. The Journal of Physical Chemistry C, 2019, 123(50): 30746–30753. doi: 10.1021/acs.jpcc.9b09698
    [124] CHEN J Y, YOO C S. Physical and chemical transformations of sodium cyanide at high pressures [J]. The Journal of Chemical Physics, 2009, 131(14): 144507. doi: 10.1063/1.3245861
    [125] HECKATHORN J W, KRUGER M B, GERLICH D, et al. High-pressure behavior of the alkali cyanides KCN and NaCN [J]. Physical Review B, 1999, 60(2): 979–983. doi: 10.1103/PhysRevB.60.979
    [126] STRÖSSNER K, HOCHHEIMER H D, HÖNLE W, et al. High-pressure Raman and X-ray studies of the alkali cyanides up to 27 GPa [J]. The Journal of Chemical Physics, 1985, 83(5): 2435–2440. doi: 10.1063/1.449289
    [127] CATAFESTA J, HAINES J, ZORZI J E, et al. Pressure-induced amorphization and decomposition of Fe[Co(CN)6] [J]. Physical Review B, 2008, 77(6): 064104. doi: 10.1103/PhysRevB.77.064104
    [128] LIU X J, MORITOMO Y, MATSUDA T, et al. Pressure-induced octahedral rotation in RbMn[Fe(CN)6] [J]. Journal of the Physical Society of Japan, 2009, 78(1): 013602. doi: 10.1143/JPSJ.78.013602
    [129] MATSUDA T, LIU X J, SHIBATA T, et al. Pressure-induced phase transition in Zn-Fe prussian blue lattice [J]. Journal of the Physical Society of Japan, 2009, 78(10): 105002. doi: 10.1143/JPSJ.78.105002
    [130] MORITOMO Y, HANAWA M, OHISHI Y, et al. Pressure and photoinduced transformation into a metastable phase in RbMn[Fe(CN)6] [J]. Physical Review B, 2003, 68(14): 144106. doi: 10.1103/PhysRevB.68.144106
    [131] LI K, ZHENG H Y, IVANOV I N, et al. K3Fe(CN)6: pressure-induced polymerization and enhanced conductivity [J]. The Journal of Physical Chemistry C, 2013, 117(46): 24174–24180. doi: 10.1021/jp407429z
    [132] FIGGIS B N, SKELTON B W, WHITE A H. Crystal structures of the simple monoclinic and orthorhombic polytypes of tripotassium hexacyanoferrate (Ⅲ) [J]. Australian Journal of Chemistry, 1978, 31(6): 1195–1199. doi: 10.1071/CH9781195
    [133] LI K, ZHENG H Y, WANG L J, et al. K3Fe(CN)6 under external pressure: dimerization of CN coupled with electron transfer to Fe (Ⅲ) [J]. The Journal of Physical Chemistry C, 2015, 119(39): 22351–22356. doi: 10.1021/acs.jpcc.5b06793
    [134] LI K, ZHENG H Y, HATTORI T, et al. Synthesis, structure, and pressure-induced polymerization of Li3Fe(CN)6 accompanied with enhanced conductivity [J]. Inorganic Chemistry, 2015, 54(23): 11276–11282. doi: 10.1021/acs.inorgchem.5b01851
    [135] BIRADHA K, SANTRA R. Crystal engineering of topochemical solid state reactions [J]. Chemical Society Reviews, 2013, 42(3): 950–967. doi: 10.1039/C2CS35343A
    [136] LI F, XU J Q, WANG Y J, et al. Pressure-induced polymerization: addition and condensation reactions [J]. Molecules, 2021, 26(24): 7581. doi: 10.3390/molecules26247581
    [137] TANG X Y, DONG X, ZHANG C F, et al. Triggering dynamics of acetylene topochemical polymerization [J]. Matter and Radiation at Extremes, 2023, 8(5): 058402. doi: 10.1063/5.0151609
    [138] CIABINI L, SANTORO M, GORELLI F A, et al. Triggering dynamics of the high-pressure benzene amorphization [J]. Nature Materials, 2007, 6(1): 39–43. doi: 10.1038/nmat1803
    [139] AOKI K, BAER B J, CYNN H C, et al. High-pressure Raman study of one-dimensional crystals of the very polar molecule hydrogen cyanide [J]. Physical Review B, 1990, 42(7): 4298–4303. doi: 10.1103/PhysRevB.42.4298
    [140] SCHETTINO V, BINI R. Molecules under extreme conditions: chemical reactions at high pressure [J]. Physical Chemistry Chemical Physics, 2003, 5(10): 1951–1965. doi: 10.1039/b301381b
    [141] ZHENG H Y, LI K, CODY G D, et al. Polymerization of acetonitrile via a hydrogen transfer reaction from CH3 to CN under extreme conditions [J]. Angewandte Chemie International Edition, 2016, 55(39): 12040–12044. doi: 10.1002/anie.201606198
    [142] ZHANG P J, TANG X Y, ZHANG C F, et al. Pressure-induced hydrogen transfer in 2-butyne via a double CH··· π aromatic transition state [J]. The Journal of Physical Chemistry Letters, 2022, 13(18): 4170–4175. doi: 10.1021/acs.jpclett.2c00877
    [143] LU T, CHEN Q X. Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions [J]. Chemistry Methods, 2021, 1(5): 231–239. doi: 10.1002/cmtd.202100007
    [144] YANG X, LI Y P, WANG Y J, et al. Chemical transformations of n-hexane and cyclohexane under the upper mantle conditions [J]. Geoscience Frontiers, 2021, 12(2): 1010–1017. doi: 10.1016/j.gsf.2020.06.006
    [145] WANG Y D, YANG X, TANG X Y, et al. Pressure gradient squeezing hydrogen out of MnOOH: thermodynamics and electrochemistry [J]. The Journal of Physical Chemistry Letters, 2021, 12(44): 10893–10898. doi: 10.1021/acs.jpclett.1c03382
    [146] WANG Y D, CHE G W, YANG X, et al. Piezovoltaics from PdH x [J]. The Journal of Physical Chemistry Letters, 2023, 14(13): 3168–3173. doi: 10.1021/acs.jpclett.3c00464
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  82
  • PDF下载量:  70
出版历程
  • 收稿日期:  2023-10-13
  • 修回日期:  2023-11-13
  • 录用日期:  2023-11-13
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回