99氧化铝陶瓷在不同应变率下的破碎特性

赵兵 李丹 赵锋 胡秋实

赵兵, 李丹, 赵锋, 胡秋实. 99氧化铝陶瓷在不同应变率下的破碎特性[J]. 高压物理学报, 2021, 35(1): 014104. doi: 10.11858/gywlxb.20200606
引用本文: 赵兵, 李丹, 赵锋, 胡秋实. 99氧化铝陶瓷在不同应变率下的破碎特性[J]. 高压物理学报, 2021, 35(1): 014104. doi: 10.11858/gywlxb.20200606
ZHAO Bing, LI Dan, ZHAO Feng, HU Qiushi. Crushing Characteristics of 99 Alumina Ceramics under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014104. doi: 10.11858/gywlxb.20200606
Citation: ZHAO Bing, LI Dan, ZHAO Feng, HU Qiushi. Crushing Characteristics of 99 Alumina Ceramics under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014104. doi: 10.11858/gywlxb.20200606

99氧化铝陶瓷在不同应变率下的破碎特性

doi: 10.11858/gywlxb.20200606
基金项目: 四川省应用基础研究计划项目(2018JY0514)
详细信息
    作者简介:

    赵 兵(1996-),男,硕士研究生,主要从事陶瓷颗粒破碎度研究. E-mail:zhaobing0117@163.com

    通讯作者:

    李 丹(1975-),男,博士,副教授,主要从事爆炸与冲击动力学研究. E-mail:danli@swust.edu.cn

  • 中图分类号: O346.13

Crushing Characteristics of 99 Alumina Ceramics under Different Strain Rates

  • 摘要: 开展了99氧化铝陶瓷在不同应变率下的轴向压缩实验,通过对相应应变率下的试件碎片进行软回收,并结合筛余法对碎片进行几何表征,获得了不同应变率下的碎片尺寸分布曲线和试件破坏的能量吸收过程,建立了颗粒陶瓷的外力功与相对破碎率之间的关系。采用数字图像相关(Digital image correlation, DIC)技术获取了不同应变率下沿加载方向的应变场,并结合能量吸收过程和碎片级配表现分析了破坏模式。实验结果表明:99氧化铝陶瓷的破坏强度与应变率呈正相关,在中应变率下,能量吸收率与应变率呈负相关,由于能量吸收机制的改变,样品初始为劈裂破坏;当应变率达到401 s−1时,破坏模式变为劈裂-粉碎混合破坏;随着应变率继续增大,试件变为粉碎破坏,颗粒平均粒径减小,碎片尺寸趋同,应力集中的影响逐渐减弱。分析了能量、破坏过程、碎片分布之间的关系,最终获得了碎片分布规律以及破碎特性。

     

  • 图  弹丸侵彻陶瓷靶板示意图

    Figure  1.  Schematic diagram of projectile penetrating ceramic target

    图  SHPB实验装置示意图

    Figure  2.  Schematic of SHPB experimental setup

    图  应变场分析的区域

    Figure  3.  Area of the analyzed strain field

    图  试件能量吸收过程

    Figure  4.  Energy absorption process of specimen

    图  不同应变率下能量吸收时程曲线与特殊时刻应变场分布

    Figure  5.  Energy absorption time history curves and strain field distribution at special time under different strain rates

    图  不同应变率下的应力集中系数

    Figure  6.  Stress concentration factor under different strain rates

    图  4种碎片计算模型

    Figure  7.  Four kinds of fragment calculation models

    图  不同应变率下碎片的收集情况

    Figure  8.  Fragments collection at different strain rates

    图  不同应变率下的碎片尺寸分布曲线

    Figure  9.  Fragment size distribution curves atdifferent strain rates

    图  10  碎片尺寸与应变率的关系

    Figure  10.  Relationship between fragment sizesand strain rates

    表  1  试件能量吸收率

    Table  1.   Energy absorption rate of specimens

    $ \dot{\varepsilon } $/s−1WL/JWI/J$\eta $/%
    18948.6406.511.96
    40149.6490.310.12
    62150.4550.89.15
    82151.1631.28.10
    下载: 导出CSV

    表  2  不同应变率下的比表面积

    Table  2.   Specific surface area under different strain rates

    $\dot \varepsilon $/s−1 m/g A/cm2 α/(cm2·g−1) $\eta\rm{_i}$/%
    189 2.02 356.19 176.33
    401 2.05 655.21 319.61 81.26
    621 2.01 821.33 408.62 27.85
    821 2.06 933.03 452.93 10.84
    下载: 导出CSV
  • [1] GAO Y B, TANG T G, YI C H, et al. Study of static and dynamic behavior of TiB2–B4C composite [J]. Materials and Design, 2016, 92: 814–822.
    [2] APPLEBY-THOMAS G J, WOOD D C, HAMEED A, et al. On the effects of powder morphology on the post-comminution ballistic strength of ceramics [J]. International Journal of Impact Engineering, 2017, 100: 46–55. doi: 10.1016/j.ijimpeng.2016.10.008
    [3] MITRA E, HAZELL P J, ASHRAF M. A discrete element model to predict the pressure-density relationship of blocky and angular ceramic particles under uniaxial compression [J]. Journal of Materials Science, 2015, 50(23): 7742–7751. doi: 10.1007/s10853-015-9344-y
    [4] ANDERSON JR C E, BEHNER T, ORPHAL D L, et al. Time-resolved penetration into pre-damaged hot-pressed silicon carbide [J]. International Journal of Impact Engineering, 2008, 35(8): 661–673. doi: 10.1016/j.ijimpeng.2007.12.003
    [5] HORSFALL I, EDWARDS M R, HALLAS M J. Ballistic and physical properties of highly fractured alumina [J]. Advances in Applied Ceramics, 2010, 109(8): 498–503. doi: 10.1179/174367610X12804792635341
    [6] NANDA H, APPLEBY-THOMAS G J, WOOD D C, et al. Ballistic behaviour of explosively shattered alumina and silicon carbide targets [J]. Advances in Applied Ceramics, 2011, 110(5): 287–292. doi: 10.1179/1743676111Y.0000000015
    [7] HAZELL P J, APPLEBY-THOMAS G J, TOONE S. Ballistic compaction of a confined ceramic powder by a non-deforming projectile: experiments and simulations [J]. Materials and Design, 2014, 56: 943–952.
    [8] 陈小伟, 陈裕泽. 脆性陶瓷靶高速侵彻/穿甲动力学的研究进展 [J]. 力学进展, 2006, 36(1): 85–102. doi: 10.3321/j.issn:1000-0992.2006.01.014

    CHEN X W, CHEN Y Z. Review on the penetration/perforation of ceramics targets [J]. Advances in Mechanics, 2006, 36(1): 85–102. doi: 10.3321/j.issn:1000-0992.2006.01.014
    [9] 尹志新, 李言语, 梁兴华, 等. 陶瓷/金属复合装甲抗侵彻研究进展 [J]. 四川兵工学报, 2013, 34(5): 116–119.

    YIN Z X, LI Y Y, LIANG X H, et al. Research progress of ceramic/metal composite armor against ballistic penetration [J]. Journal of Sichuan Ordnance Engineering, 2013, 34(5): 116–119.
    [10] 陈硕, 赵忠民, 张龙. 陶瓷装甲材料动态力学研究进展 [J]. 特种铸造及有色合金, 2016, 36(4): 401–406.

    CHEN S, ZHAO Z M, ZHANG L. Review on dynamic fracture of ceramics materials in armor applications [J]. Special Casting and Nonferrous Alloys, 2016, 36(4): 401–406.
    [11] HAMEED A, APPLEBY-THOMAS G J, WOOD D C, et al. On the ballistic response of comminuted ceramics [J]. Journal of Physics: Conference Series, 2014, 500(11): 112005. doi: 10.1088/1742-6596/500/11/112005
    [12] HUANG J, XU S, HU S. The role of contact friction in the dynamic breakage behavior of granular materials [J]. Granular Matter, 2015, 17(1): 111–120. doi: 10.1007/s10035-014-0543-z
    [13] LÓPEZ-PUENTE J, ARIAS A, ZAERA R, et al. The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 321–336.
    [14] ANDERSON JR C E, ROYAL-TIMMONS S A. Ballistic performance of confined 99.5%-Al2O3 ceramic tiles [J]. International Journal of Impact Engineering, 1997, 19(8): 703–713. doi: 10.1016/S0734-743X(97)00006-7
    [15] SHIH C J, MEYERS M A, NESTERENKO V F. High-strain-rate deformation of granular silicon carbide [J]. Acta materialia, 1998, 46(11): 4037–4065. doi: 10.1016/S1359-6454(98)00040-8
    [16] SHIH C J, NESTERENKO V F, MEYERS M A. Shear localization and comminution of granular and fragmented silicon carbide [J]. Journal de Physique IV, 1997, 7(C3): 577–582.
    [17] GU Y B, RAVICHANDRAN G. Dynamic behavior of selected ceramic powders [J]. International Journal of Impact Engineering, 2006, 32(11): 1768–1785. doi: 10.1016/j.ijimpeng.2005.04.012
    [18] HOGAN J D, CASTILLO J A, RAWLE A, et al. Automated microscopy and particle size analysis of dynamic fragmentation in natural ceramics [J]. Engineering Fracture Mechanics, 2013, 98: 80–91. doi: 10.1016/j.engfracmech.2012.11.021
    [19] 冯若琪, 朱哲明, 范勇. 砂岩半圆盘弯曲的复合型断裂性质及准则研究 [J]. 四川大学学报(工程科学版), 2016, 48(Suppl 1): 121–127.

    FENG R Q, ZHU Z M, FAN Y. Research on mixed-mode fracture properties and criteria by using sandstone SCB specimen [J]. Journal of Sichuan University (Engineering Sciences Edition), 2016, 48(Suppl 1): 121–127.
    [20] 洪忠强. 岩石破碎度计算方法及破碎岩层分级探讨 [J]. 探矿工程, 1987(5): 57–60.

    HONG Z Q. Discussion on calculation method of rock fragmentation and classification of broken rock strata [J]. Exploration Engineering, 1987(5): 57–60.
    [21] 章冠人. 动力破碎的几何统计和分形方法 [J]. 高压物理学报, 1996, 10(3): 56–60.

    ZHANG G R. Geometrical statistics and fractal method for the fragment distribution of dynamic loading [J]. Chinese Journal of High Pressure Physics, 1996, 10(3): 56–60.
    [22] 郑宇轩. 韧性材料的动态碎裂特性研究[D]. 合肥: 中国科学技术大学, 2013.

    ZHENG Y X. Research on dynamic fragmentation of ductile metals [D]. Hefei: University of Science and Technology of China, 2013.
    [23] THEODOROU D N, SUTER U W. Shape of unperturbed linear polymers: polypropylene [J]. Macromolecules, 1985, 18(6): 1206–1214. doi: 10.1021/ma00148a028
    [24] FAROOQUE T M, CAMP C H, TISON C K, et al. Measuring stem cell dimensionality in tissue scaffolds [J]. Biomaterials, 2014, 35(9): 2558–2567. doi: 10.1016/j.biomaterials.2013.12.092
    [25] DRUGAN W J. Dynamic fragmentation of brittle materials: analytical mechanics-based models [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(6): 1181–1208. doi: 10.1016/S0022-5096(01)00002-3
    [26] WENG L, WU Z, LIU Q, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures [J]. Engineering Fracture Mechanics, 2019, 220: 106659. doi: 10.1016/j.engfracmech.2019.106659
    [27] 谈瑞, 李海洋, 黄俊宇. Al2O3陶瓷动静态压缩下碎片形貌与破坏机理分析 [J]. 爆炸与冲击, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050

    TAN R, LI H Y, HUANG J Y. Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression [J]. Explosion and Shock Waves, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050
    [28] HAYUN S, PARIS V, DARIEL M P, et al. Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering [J]. Journal of the European Ceramic Society, 2009, 29(16): 3395–3400. doi: 10.1016/j.jeurceramsoc.2009.07.007
    [29] ZHANG Z G, WANG M C, SONG S C, et al. Influence of panel/back thickness on impact damage behavior of alumina/aluminum armors [J]. Journal of the European Ceramic Society, 2010, 30(4): 875–887. doi: 10.1016/j.jeurceramsoc.2009.08.023
    [30] HOLLAND C C, MCMEEKING R M. The influence of mechanical and microstructural properties on the rate-dependent fracture strength of ceramics in uniaxial compression [J]. International Journal of Impact Engineering, 2015, 81: 34–49. doi: 10.1016/j.ijimpeng.2015.02.007
    [31] GRADY D E. Local inertial effects in dynamic fragmentation [J]. Journal of Applied Physics, 1982, 53(1): 322–325. doi: 10.1063/1.329934
    [32] GLENN L A, CHUDNOVSKY A. Strain-energy effects on dynamic fragmentation [J]. Journal of Applied Physics, 1986, 59(4): 1379–1380. doi: 10.1063/1.336532
    [33] ZHOU F H, MOLINARI J-F, RAMESH K T. Effects of material properties on the fragmentation of brittle materials [J]. International Journal of Fracture, 2006, 139(2): 169–196. doi: 10.1007/s10704-006-7135-9
    [34] 周风华, 郭丽娜, 王礼立. 脆性固体碎裂过程中的最快卸载特性 [J]. 固体力学学报, 2010, 31(3): 286–295.

    ZHOU F H, GUO L N, WANG L L. The rapidest unloading characteristics in the fragmentation process of brittle solids [J]. Chinese Journal of Solid Mechanics, 2010, 31(3): 286–295.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  4542
  • HTML全文浏览量:  2207
  • PDF下载量:  30
出版历程
  • 收稿日期:  2020-08-22
  • 修回日期:  2020-09-15

目录

    /

    返回文章
    返回