基于FLACS的某城市燃气储配站气云爆炸安全评估

刘洋 李展 张亚栋 陈力 方秦

刘洋, 李展, 张亚栋, 陈力, 方秦. 基于FLACS的某城市燃气储配站气云爆炸安全评估[J]. 高压物理学报, 2021, 35(1): 015201. doi: 10.11858/gywlxb.20200595
引用本文: 刘洋, 李展, 张亚栋, 陈力, 方秦. 基于FLACS的某城市燃气储配站气云爆炸安全评估[J]. 高压物理学报, 2021, 35(1): 015201. doi: 10.11858/gywlxb.20200595
LIU Yang, LI Zhan, ZHANG Yadong, CHEN Li, FANG Qin. Safety Evaluation of Gas Cloud Explosions in an Urban Distribution Stations Based on FLACS[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015201. doi: 10.11858/gywlxb.20200595
Citation: LIU Yang, LI Zhan, ZHANG Yadong, CHEN Li, FANG Qin. Safety Evaluation of Gas Cloud Explosions in an Urban Distribution Stations Based on FLACS[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015201. doi: 10.11858/gywlxb.20200595

基于FLACS的某城市燃气储配站气云爆炸安全评估

doi: 10.11858/gywlxb.20200595
基金项目: 国家自然科学基金(52008392);江苏省自然科学基金(BK20190571)
详细信息
    作者简介:

    刘 洋(1996-),男,硕士研究生,主要从事燃气爆炸灾害效应研究. E-mail:20145035@cqu.edu.cn

    通讯作者:

    李 展(1990-),男,博士,讲师,主要从事燃气爆炸灾害效应研究. E-mail:lz.9008@163.com

  • 中图分类号: O381; X932

Safety Evaluation of Gas Cloud Explosions in an Urban Distribution Stations Based on FLACS

  • 摘要: 随着城市的发展,位于城市边缘的燃气储配站逐渐转移到了城市中心,而储配站存在燃气泄漏爆炸的可能,给城市公共安全带来潜在的风险。基于GIS技术建立了南京某燃气储配站所在区域的几何模型,导入FLACS软件进行甲烷气云爆炸数值模拟,研究了储配站气云爆炸发展过程与荷载分布规律,讨论了气云大小、点火位置以及气云位置对爆炸超压的影响,最后根据模拟结果划出爆炸损伤范围。结果表明:将GIS技术应用于FLACS模型建立可以大大缩短建模时间并提高模型精度;当气云尺寸不小于60 m且点火位置存在明显约束或障碍时,点火后可能产生爆燃;气云位于储罐西南侧时将造成大范围的人员轻伤和建筑物轻微损坏,并造成一定范围的人员重伤和建筑物的严重损坏;为避免气云爆炸产生严重后果,储配站附近应尽量减少高大密集的建筑群。

     

  • 图  储配站周围重要建筑物分布

    Figure  1.  Important buildings around the gas distribution station

    图  储配站区域航拍图与几何模型

    Figure  2.  Aerial photograph and geometric model of gas distribution station area

    图  储配站数值模型

    Figure  3.  Numerical model of gas distribution station area

    图  压力测点分布

    Figure  4.  Positions of pressure gauges

    图  不同气云尺寸(工况1~工况3)

    Figure  5.  Different sizes of gas clouds (Case 1−Case 3)

    图  不同气云位置(工况1,工况6~工况8)

    Figure  6.  Different locations of gas clouds (Case 1, Case 6−Case 8)

    图  超压时程曲线(工况1)

    Figure  7.  Overpressure-time histories of Case 1

    图  气云爆炸火焰形状(工况1)

    Figure  8.  Flame shapes of gas explosion (Case 1)

    图  工况1最大超压分布云图(3~25 kPa)

    Figure  9.  Contour of maximum overpressure for Case 1 (3−25kPa)

    图  10  测点P2超压时程曲线(工况1~工况3)

    Figure  10.  Overpressure-time histories of pressure sensor P2 (Case 1−Case 3)

    图  11  最大超压时刻气云爆炸火焰形状(工况1~工况3)

    Figure  11.  Flame shapes of gas explosion (Case 1−Case 3)

    图  12  测点P2超压时程曲线(工况1,工况4~工况7)

    Figure  12.  Pressure-time curves of pressure sensor P2 (Case 1, Case 4−Case 7)

    图  13  气云爆炸火焰形状(工况4)

    Figure  13.  Characteristics of the flame shape of gas explosion (Case 4)

    图  14  气云爆炸火焰形状(工况5和工况6)

    Figure  14.  Characteristics of the flame shape of gas explosion (Case 5 and Case 6)

    图  15  气云爆炸火焰形状(工况7)

    Figure  15.  Characteristics of the flame shape of gas explosion (Case 7)

    图  16  最大超压分布云图(工况1,工况8~工况10)

    Figure  16.  Contours of maximum overpressure distribution (Case 1, Case 8−Case 10)

    图  17  人员轻伤范围 (20~40 kPa)

    Figure  17.  Range of minor wound (20−40 kPa)

    图  18  人员中伤和重伤范围

    Figure  18.  Range of secondary wound and severe wound

    图  19  建筑物轻微损坏范围 (3~10 kPa)

    Figure  19.  Ranges of building minor damage (3−10kPa)

    图  20  建筑物轻度损坏范围 (10~30 kPa)

    Figure  20.  Ranges of building mild damage(10−30 kPa)

    图  21  建筑物中度和严重损坏范围

    Figure  21.  Ranges of secondary damage and badly damage

    表  1  压力测点布局

    Table  1.   Positions of pressure sensors

    Serial number of pressure sensorsBuildingsDescriptions
    P1, P2Office buildingImportant high-rise building
    P3Residential buildingImportant high-rise building
    P4Children’s hallImportant building
    P5Nursery schoolImportant building
    P6Shopping mallPotential crowded area
    P7Gas stationImportant building
    下载: 导出CSV

    表  2  气云爆炸模拟工况

    Table  2.   Cases considered in the numerical simulations

    Case No.Gas cloud sizeIgnition locationGas cloud location
    190 m × 90 m × 90 mCenter of bottom areaClose to the gasholder
    260 m × 60 m × 60 mCenter of bottom areaClose to the gasholder
    330 m × 30 m × 30 mCenter of bottom areaClose to the gasholder
    490 m × 90 m × 90 mCenter of gas cloudClose to the gasholder
    590 m × 90 m × 90 mSouthwest corner of bottom areaClose to the gasholder
    690 m × 90 m × 90 mSoutheast corner of bottom areaClose to the gasholder
    790 m × 90 m × 90 mNortheast corner of bottom areaClose to the gasholder
    890 m × 90 m × 90 mCenter of bottom areaNorthwest side
    990 m × 90 m × 90 mCenter of bottom areaWest side
    1090 m × 90 m × 90 mCenter of bottom areaSouthwest side
    下载: 导出CSV

    表  3  爆炸超压对人员和建筑物的伤害[46]

    Table  3.   Damage level of personnel and buildings under explosion overpressure[46]

    Damage level of personnelOverpressure/kPaDamage level of buildingsOverpressure/kPa
    Safe < 20Minor damage3−10
    Minor wound20−40Mild damage10−30
    Secondary wound30−50Secondary damage30−50
    Severe wound50−100Badly damaged50−80
    Death > 100Completely damaged > 80
    下载: 导出CSV
  • [1] 马秋菊, 张奇, 庞磊. 甲烷-空气最小点火能量预测理论模型 [J]. 高压物理学报, 2012, 26(3): 301–305. doi: 10.11858/gywlxb.2012.03.009

    MA Q J, ZHANG Q, PANG L. Theoretical model of minimum ignition energy prediction for methane-air mixture [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 301–305. doi: 10.11858/gywlxb.2012.03.009
    [2] 孙晓平, 朱渊, 陈国明, 等. 国内外LNG罐区燃爆事故分析及防控措施建议 [J]. 天然气工业, 2013, 33(5): 126–131.

    SUN X P, ZHU Y, CHEN G M, et al. An analysis of foreign and domestic explosion accidents in LNG tank fields and proposals for preventing measures [J]. Natural Gas Industry, 2013, 33(5): 126–131.
    [3] ZHANG Q T, ZHOU G, HU Y Y, et al. Risk evaluation and analysis of a gas tank explosion based on a vapor cloud explosion model: a case study [J]. Engineering Failure Analysis, 2019, 101.
    [4] 李琦. 燃气储配站危险有害因素识别 [C]//2016中国燃气运营与安全研讨会论文集. 大连: 中国土木工程学会燃气分会, 2016: 544−548.

    LI Q. Identification of dangerous and harmful factors in gas storage and distribution stations [C]//2016 Proceedings of China Gas Operation and Safety Seminar. Dalian: Gas Branch of China Civil Engineering, 2016: 544−548.
    [5] 王建. 储罐区可燃气体泄漏扩散模拟及爆燃灾害评估 [D]. 大连: 大连理工大学, 2013.

    WANG J. Numerical simulation for the leakage diffusion of combustible gas and explosion hazards assessment in tank area [D]. Dalian: Dalian University of Technology, 2013.
    [6] 张萌, 胡定煜, 舒中俊. CNG储气井泄漏导致火灾及爆炸事故风险分析与对策研究 [J]. 防灾科技学院学报, 2013, 15(2): 30–35. doi: 10.3969/j.issn.1673-8047.2013.02.007

    ZHANG M, HU D Y, SHU Z J. Risk analysis and countermeasure research of leakage fire and explosion accidents in CNG storage wells [J]. Journal of Institute of Disaster Preventi, 2013, 15(2): 30–35. doi: 10.3969/j.issn.1673-8047.2013.02.007
    [7] 陈晓坤, 李鑫, 王秋红, 等. 乙烯球罐区多源泄漏爆炸数值仿真 [J]. 西安科技大学学报, 2019, 39(6): 957–964.

    CHEN X K, LI X, WANG Q H, et al. Numerical simulation of multi-source leakage explosion in ethylene tank area [J]. Journal of Xi’an University of Science and Technology, 2019, 39(6): 957–964.
    [8] 安春晖. 某CNG加气站的火灾爆炸危险性评价 [J]. 消防科学与技术, 2014, 33(7): 828–832. doi: 10.3969/j.issn.1009-0029.2014.07.032

    AN C H. The fire and explosion risk analysis of a CNG station [J]. Fire Science and Technology, 2014, 33(7): 828–832. doi: 10.3969/j.issn.1009-0029.2014.07.032
    [9] 张川. 蒸气云爆炸模型在天然气爆炸中的应用 [J]. 中国石油和化工标准与质量, 2017, 37(9): 62–63. doi: 10.3969/j.issn.1673-4076.2017.09.030

    ZHANG C. Application of steam cloud explosion model in natural gas explosion [J]. China Petroleum and Chemical Standard and Quality, 2017, 37(9): 62–63. doi: 10.3969/j.issn.1673-4076.2017.09.030
    [10] 孟亦飞, 蒋军成. 气云爆炸对厂区平面布局的影响分析 [J]. 石油化工高等学校学报, 2008(1): 60–65. doi: 10.3969/j.issn.1006-396X.2008.01.015

    MENG Y F, JIANG J C. Gas explosion’s influence on plant layout [J]. Journal of Petrochemical Universities, 2008(1): 60–65. doi: 10.3969/j.issn.1006-396X.2008.01.015
    [11] 丛立新. 气云爆燃压力场与冲量场实验与数值模拟[D]. 大连: 大连理工大学, 2008.

    CONG L X. Experiment and simulation on pressure and impulse field of gas cloud deflagration [D]. Dalian: Dalian University of Technology, 2008.
    [12] 毕明树. 开敞空间可燃气云爆炸的压力场研究[D]. 大连: 大连理工大学, 2001.

    BI M S. A research on the pressure fields of unconfined flammable gas cloud explosions [D]. Dalian: Dalian University of Technology, 2001.
    [13] 邵卫. 开敞空间可燃气云爆炸研究[D]. 大连: 大连理工大学, 2002.

    SHAO W. A study on explosion of combustible gas cloud in open space [D]. Dalian: Dalian University of Technology, 2002.
    [14] 曾岳梅, 凌晓东. LNG接收站蒸气云爆炸数值模拟分析 [J]. 消防科学与技术, 2013, 32(8): 834–837. doi: 10.3969/j.issn.1009-0029.2013.08.005

    ZENG Y M, LING X D. Numerical simulation of vapor cloud explosion in LNG receiving terminal [J]. Fire Science and Technology, 2013, 32(8): 834–837. doi: 10.3969/j.issn.1009-0029.2013.08.005
    [15] 凌晓东. 槽车装卸区泄漏爆炸CFD模拟研究 [J]. 消防科学与技术, 2018, 37(9): 1282–1286. doi: 10.3969/j.issn.1009-0029.2018.09.038

    LING X D. CFD simulation on leakage and explosion accident of truck loading station [J]. Fire Science and Technology, 2018, 37(9): 1282–1286. doi: 10.3969/j.issn.1009-0029.2018.09.038
    [16] 王学岐, 韩兆辉, 宋丹青. 基于CFD的液化气罐区泄漏爆炸事故后果模拟 [J]. 中国安全生产科学技术, 2013, 9(2): 64–68.

    WANG X Q, HAN Z H, SONG D Q. Simulation on leakage explosion consequence of LPG tank farms based on CFD [J]. Journal of Safety Science and Technology, 2013, 9(2): 64–68.
    [17] 李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析 [J]. 浙江大学学报(工学版), 2015, 49(7): 1389–1394.

    LI J Y, ZHAO Y Z, ZHENG J Y. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station [J]. Journal of Zhejiang University (Engineering Science), 2015, 49(7): 1389–1394.
    [18] 罗艾民, 贾宝硖, 吴昊, 等. 工厂三维建模及其事故模拟 [J]. 中国安全科学学报, 2010, 20(1): 31–35. doi: 10.3969/j.issn.1003-3033.2010.01.005

    LUO A M, JIA B X, WU H, et al. Three-dimensional modeling of factories and its accident numerical simulation [J]. China Safety Science Journal (CSSJ), 2010, 20(1): 31–35. doi: 10.3969/j.issn.1003-3033.2010.01.005
    [19] 王志寰, 李成兵, 周宁. 大型LNG接收站泄漏事故灾害效应分析与预测 [J]. 天然气工业, 2019, 39(5): 145–153. doi: 10.3787/j.issn.1000-0976.2019.05.018

    WANG Z H, LI C B, ZHOU N. Analysis and prediction on the disaster effect of leakage accidents at large LNG receiving stations [J]. Natural Gas Industry, 2019, 39(5): 145–153. doi: 10.3787/j.issn.1000-0976.2019.05.018
    [20] 徐大用, 蒋会春, 姜威, 等. 基于FLACS的汽油槽车运输泄漏爆炸事故数值模拟研究 [J]. 常州大学学报(自然科学版), 2019, 31(4): 16–25.

    XU D Y, JIANG H C, JIANG W, et al. CFD Simulation of gasoline tanker transportation explosion using FLACS [J]. Journal of Changzhou University (Natural Science Edition), 2019, 31(4): 16–25.
    [21] 韦善阳, 王川, 胡庆革. 油罐泄漏爆炸影响范围研究 [J]. 消防科学与技术, 2015, 34(1): 22–25. doi: 10.3969/j.issn.1009-0029.2015.01.007

    WEI S Y, WANG C, HU Q G. Study on influence range of oil tank explosion [J]. Fire Science and Technology, 2015, 34(1): 22–25. doi: 10.3969/j.issn.1009-0029.2015.01.007
    [22] 马庆春, 张博. 基于ALOHA的城市燃气管道泄漏火灾爆炸影响区域的数值模拟 [J]. 安全与环境工程, 2016, 23(2): 75–79.

    MA Q C, ZHANG B. Numerical simulation of fire & explosion-affected areas caused by the urban natural gas pipeline leakage based on ALOHA [J]. Safety and Environmental Engineering, 2016, 23(2): 75–79.
    [23] ZHANG Y, JIA Y, WANG S Y. Development and application of GIS module in NCCHE modeling system [C]//World Environmental and Water Resources Congress-2011. Palm Springs, CA, 2011: 1934−1942.
    [24] 章博, 陈国明, 孔令圳. 一种真实地形计算流体力学网格生成方法 [J]. 中国石油大学学报(自然科学版), 2011, 35(5): 104–108.

    ZHANG B, CHEN G M, KONG L Z. A method for computational fluid dynamics grids formation on complex terrain [J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(5): 104–108.
    [25] 张立. 耦合CFD与GIS在城市燃气三维动态泄漏扩散中的应用研究[D]. 重庆: 重庆交通大学, 2015.

    ZHANG L. Application research of city gas 3D dynamic leakage and diffusion coupled with CFD and GIS [D]. Chongqing: Chongqing Jiaotong University, 2015.
    [26] WONG D W, CAMELLI F, SONWALKAR M. Integrating computational fluid dynamics (CFD) models with GIS: an evaluation on data conversion formats [C]//Geoinformatics 2007: Geospatial Information Science, International Society for Optics and Photonics, 2007, 6753: 675312.
    [27] ROELOFS J G J. Development and application of urban CFD models based on GIS data for analysis of urban wind flow and heat transfer [D]. Eindhoven: Eindhoven University of Technology, 2011.
    [28] CHU A K M, KWOK R C W, YU K N. Study of pollution dispersion in urban areas using computational fluid dynamics (CFD) and Geographic Information System (GIS) [J]. Environmental Modelling & Software, 2005, 20(3): 273–277.
    [29] 成竞. 基于CFD的居民小区流场与空气污染数值模拟[D].上海: 复旦大学, 2012.

    CHENG J. Using CFD software to simulate wind environment and air pollution dispersion in residential districts [D]. Shanghai: Fudan University, 2012.
    [30] 孙洁. 室外管道燃气泄漏扩散模拟与可视化研究[D]. 重庆: 重庆交通大学, 2012.

    SUN J. Outdoor pipeline gas leakage diffusion and visualization simulation research [D]. Chongqing: Chongqing Jiaotong University, 2012.
    [31] 张立. 耦合GIS与CFD应用潜力与面临挑战的探讨 [J]. 科技视界, 2014(29): 162. doi: 10.3969/j.issn.2095-2457.2014.29.123

    ZHANG L. Application potential and challenges of coupled GIS and CFD [J]. Science & Technology Vision, 2014(29): 162. doi: 10.3969/j.issn.2095-2457.2014.29.123
    [32] 席明军. 基于CFD和GIS的城市燃气管道泄漏扩散模拟研究[D]. 成都: 西南石油大学, 2016.

    XI M J. CFD and GIS based urban gas pipeline leakage diffusion simulation study [D]. Chengdu: Southwest Petroleum University, 2016.
    [33] 缪鹏飞, 刘道明, 田欣. GIS的LPG储罐爆炸后果模拟及应急处置 [J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(9): 926–930. doi: 10.11956/j.issn.1008-0562.2016.09.006

    MIAO P F, LIU D M, TIAN X. Simulation analysis of LPG tank explosion based on GIS and its application in emergency disposal [J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(9): 926–930. doi: 10.11956/j.issn.1008-0562.2016.09.006
    [34] 付珍. 基于GIS的城市燃气管道事故后果分析[D]. 成都: 西南石油大学, 2012.

    FU Z. The consequence analysis of urban gas pipeline accident based on GIS [D]. Chengdu: Southwest Petroleum University, 2012.
    [35] 李天祺, 赵振东, 余世舟. 基于GIS的爆炸灾害数值模拟与应急损失评估 [J]. 灾害学, 2010, 25(3): 96–99. doi: 10.3969/j.issn.1000-811X.2010.03.020

    LI T Q, ZHAO Z D, YU S Z. GIS-based numerical simulation and emergency loss evaluation of explosion disasters [J]. Journal of Catastrophology, 2010, 25(3): 96–99. doi: 10.3969/j.issn.1000-811X.2010.03.020
    [36] GEXCON A S. FLACS v10. 8 user’s manual [Z]. Bergen, Norway: GEXCON AS, 2017.
    [37] 翟良云, 赵祥迪, 袁纪武, 等. 石化行业控制室承爆风险评估方法研究 [J]. 中国安全科学学报, 2009, 19(6): 129–134. doi: 10.3969/j.issn.1003-3033.2009.06.020

    ZHAI L Y, ZHAO X D, YUAN J W, et al. Study on explosion risk assessment method for control room in petrochemical industry [J]. China Safety Science Journal, 2009, 19(6): 129–134. doi: 10.3969/j.issn.1003-3033.2009.06.020
    [38] 王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2004: 9.

    WANG F J. Computational fluid dynamics analysis [M]. Beijing: Tsinghua University Press, 2004: 9.
    [39] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows [J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269–289. doi: 10.1016/0045-7825(74)90029-2
    [40] 张慧. 基于生态服务功能的南京市生态安全格局研究[D]. 南京: 南京师范大学, 2016.

    ZHANG H. Research on ecological security pattern of Nanjing based on ecological service function [D]. Nanjing: Nanjing Normal University, 2016.
    [41] 潘旭海. 燃烧爆炸理论及应用[M]. 北京: 化学工业出版社, 2015.

    PAN X H. Theory and application of combustion explosion [M]. Beijing: Chemical Industry Press, 2015.
    [42] BJERKETVEDT D, BAKKE J R, VAN WINGERDEN K. Gas explosion handbook [J]. Journal of Hazardous Materials, 1997, 52(1): 1–150. doi: 10.1016/S0304-3894(97)81620-2
    [43] 刘彦. 爆炸物理学[M]. 北京: 北京理工大学出版社有限责任公司, 2019.

    LIU Y. Explosion physics [M]. Beijing: Beijing Institute of Technology Press Co., Ltd., 2019.
    [44] BAO Q, FANG Q, YANG S G, et al. Experimental investigation on the deflagration load under unconfined methane-air explosions [J]. Fuel, 2016, 185: 565–576. doi: 10.1016/j.fuel.2016.07.126
    [45] 孙博. 开敞空间可燃气云爆炸研究[D]. 大连: 大连理工大学, 2000.

    SUN B. A study on explosion of combustible gas cloud in open space [D]. Dalian: Dalian University of Technology, 2000.
    [46] 张云明. 气体爆炸原理与防治技术[M]. 北京: 化学工业出版社, 2018.

    ZHANG Y M. Principle and control technology of gas explosion [M]. Beijing: Chemical Industry Press, 2018.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  4730
  • HTML全文浏览量:  1953
  • PDF下载量:  47
出版历程
  • 收稿日期:  2020-07-22
  • 修回日期:  2020-08-11

目录

    /

    返回文章
    返回